About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Bloomberg Offers Guidance on Getting Data Annotation Right for Machine Learning

Subscribe to our newsletter

Machine learning has become essential to financial institutions seeking timely business insight and signals of opportunity and risk across the business. At many firms, the technology is being scaled and use cases are proliferating. There are limitations, however, with useful outcomes from machine learning models depending on high quality data that is annotated accurately and consistently.

Data annotation probably isn’t the first thing that comes to mind when considering machine learning projects, but it is crucial to success and often difficult to achieve. With this in mind, Bloomberg has pulled together its expertise in annotation and published it for the use of other organisations.

The publication, Best Practices for Managing Data Annotation Projects, provides a practical guide to planning, executing, and evaluating the annotation step in machine learning projects. It was authored by Amanda Stent, natural language processing (NLP) architect in the office of the CTO; Tina Tseng, legal analyst with Bloomberg Law; and Domenic Maida, chief data officer, global data.

Key considerations of data annotation covered by the publication include, how to:

  • Identify stakeholders that should be involved in a project
  • Decide on datasets to be included in the project
  • Write and share annotation guidelines
  • Select an annotation tool
  • Test annotation for correct results and edge cases
  • Select the right team for each project based on the data
  • Ensure consistent communication across the team
  • Manage time and budget to ensure all project data is covered
  • Evaluate annotation quality at the end of the project.

The authors note that data annotation projects are ongoing processes rather than one-off tasks, and acknowledge the need for a human in the loop ‘as we have more contextual value than computers’.

Bloomberg’s expertise in annotation is built on the need to understand different types and formats of data that flow through its data pipelines and analytics, including earnings releases and tables, PDFs of filings, news articles, and ever-changing information about stocks, maturity dates of bonds, foreign exchange rates, and commodity prices. The company uses and contributes to the open source tool pybossa for data annotation.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Strategies and solutions for unlocking value from unstructured data

Unstructured data accounts for a growing proportion of the information that capital markets participants are using in their day-to-day operations. Technology – especially generative artificial intelligence (GenAI) – is enabling organisations to prise crucial insights from sources – such as social media posts, news articles and sustainability and company reports – that were all but...

BLOG

Challenges of the New Regulatory Landscape: Data Management Summit London Preview

The regulatory landscape for financial institutions has rarely been in greater flux than now, placing new challenges on the technology and data that will be critical to satisfying the requirements of overseers. While digital innovations are offering organisations the opportunity to meet their compliance obligations with greater accuracy and efficiency, they are also encouraging regulators...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...