About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Blockchain Can Clear Data Bottlenecks, Experts Say

Subscribe to our newsletter

Achieving the goal of monetising data assets through disruptive technologies such as blockchain, machine learning and data ontology standards requires thoughtful harnessing of these resources – and collaboration among units of firms, according to data management experts who spoke in a panel discussion on data innovation at the Data Management Summit hosted by A-Team Group in New York on November 17.

“In our organisations, for all the investments we put in, data is still a bottleneck for innovation, as opposed to being a driver for innovation,” says David Blaszkowsky, a former head of data governance at State Street. Citing Michael Stonebreaker, MIT professor and chief technology officer of Tamr, who delivered a keynote presentation at the event, Blaszkowsky mentioned that data scientists at large firms are spending 60% to 80% of their time fixing data in order to apply data science techniques.

“How can you spend time innovating, and be a forward-looking organisation? People doing data science don’t want to spend all their time doing scrubbing,” Blaszkowsky said. “Technologies like blockchain open opportunities for innovators to grab hold of the data content.”

New York-based Concur Reference Data applies blockchain protocols to source fixed-income reference data. Its co-founder and CEO, Tim Rice, noted that blockchain technology (which includes distributed ledger technology) facilitates leveraging of open standards for data, such as FIBO (Financial Industry Business Ontology).

“Blockchain technology … gives us a better opportunity to collect the source bond information in the same semantic framework that FIBO would require later on,” Rice said.

Chris Betz, a consultant and senior advisor at the EDM Council, which is the developer of FIBO, pointed to the need for more dynamic and faster data standard solutions that can cover the widest possible variety of assets and securities.

“A year ago, there were six blockchain proofs of concept (PoCs). Now there’s 70. There are a hundred different organisations involved and they’re all trying to figure out how to slice significant costs out of their infrastructure,” Betz said. “From a capability and innovation perspective, how quickly will new technology architectures be adopted? How can we use FIBO across asset classes, to define assets in a pure, de-materialised way? How does that accelerate business?

“There’s significant demand from a legal, regulatory and compliance perspective today,” he added. “Having watched blockchain and FIBO for the past year, and the funding model required for enterprise data management and best practices, the speed of delivery and the agility to deliver on what the industry is looking for is going to be a challenge. The difficulty of getting everyone’s agreement and consensus is no small thing.”

Machine learning capability has made it possible to conduct analytics on data at a greater scale, noted Tassos Sarbanes, data architect at Credit Suisse. Innovation in the form of distributed ledger technology or newer ontology standards could produce similar dividends, he suggested. Sarbanes and Rice both said the industry needs open collaboration about terms and conditions – such as FIBO, or otherwise – to drive data management for its business.

Blaszkowsky counseled firms to consider available innovations and not commit to a solution too early. “In data governance, blockchain and semantic data, there’s great opportunity to make better products,” he said. “The alternative, which I’ve seen firsthand, is letting the government require something, and then vendors show up. … That’s not the best way to do it.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Data’s Role in AI Transition and Value Creation: Data Management Summit London Preview

The rapid adoption of artificial intelligence by financial institutions has required a heavy data management uplift as organisations have upgraded their systems to incorporate the new technology. It has also provided greater opportunity to squeeze even more value from data by enabling its efficient deployment across enterprises. Just how companies manage data for AI to...

EVENT

RegTech Summit London

Now in its 9th year, the RegTech Summit in London will bring together the RegTech ecosystem to explore how the European capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...