About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Alveo Reviews Costs and Use Cases of AI in Financial Data Management

Subscribe to our newsletter

Adoption of AI across financial services is causing a cost shift from operations to technology and data, with 63% of decision makers expecting AI to result in an increase in the cost of data within their organisation. The cost of hardware and software licences is also likely to rise in response to AI, and 50% of decision makers note technological limitations among the biggest barriers to implementing AI in financial data management, 46% reference a lack of skilled personnel.

On the upside, according to research commissioned by Alveo that surveyed senior decision-makers at financial services organisations in the UK, US and DACH region (Germany, Austria and Switzerland), AI offers huge potential to drive productivity across data management with 53% of the sample ranking data quality management as the area of data management where AI will have the greatest impact.

In terms of today’s use of AI, the survey found financial services firms using AI for different aspects of financial data management, with 55% of firms using it for risk data management, 49% for client data management, 47% for portfolio data management and 46% for master data management.

Commenting on the results, Martijn Groot, vice president of marketing and strategy at Alveo, says: “As the human element in data workflows diminishes due to the next wave of automation, there is a large premium on good quality data. To achieve and maintain the high standard of data quality necessary for effective AI implementation, firms will need financial data management expertise to design, oversee, and refine the infrastructure and processes that feed into AI systems, and ensure all data is accurate, relevant, and timely.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Streamlining trading and investment processes with data standards and identifiers

Financial institutions are integrating not only greater volumes of data for use across their organisation but also more varieties of data. As well, that data is being applied to more use cases than ever before, especially regulatory compliance and ESG integration. Due to this increased complexity of institutions’ data needs, however, information often arrives into...

BLOG

Making the Most of Mainframe Structured Data: Webinar Preview

Mainframes still provide the data and computational backbone of many financial institutions but some organisations are encountering challenges as they try to integrate them with newer architectures. Many are incompatible with cloud and server-based architectures as well as APIs. Work-arounds can be achieved but they require middleware that can be costly and time consuming to...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...