About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

A-Team Webinar to Discuss Data Transformation in Quant Research and Trading

Subscribe to our newsletter

Quantitative workflows rely on sourcing, aggregating, normalising and managing data. This can be highly resource-intensive, leading to a situation where some financial institutions with quant shops are more focused on data management than on data science and modeling.

So how can the data ingestion, management, and pipeline processes of quant workflows be streamlined, allowing quants to concentrate on their primary responsibilities such as building models, testing them, exploring alternative data sources, accessing available data models and libraries, and ultimately generating alpha?

This will be the subject of A-Team Group’s upcoming webinar on 14th March 2023, ‘Transforming Data Experiences in Quantitative Research and Trading’, featuring James McGeehan, Industry Principal, Financial Services and Bryan Lenker, Industry Field CTO, Financial Services at Snowflake.

“The data wrangling challenge in data science is significant,” says McGeehan. “With the increasing volume, variety, velocity, and veracity of data, having the ability to process, test and run transactional and analytical workloads and to speed up time to value is crucial, particularly with the real-time data sets needed in the financial markets space. Being able to simplify infrastructure, break down data silos, and enable quick insights is becoming increasingly essential.”

The webinar will look at how leading firms are transforming their data architectures and leveraging native application frameworks to access more data, power quantitative models, uncover unique insights and ultimately add value to their end users and customers.

“One of the key challenges is accessing and utilising multiple sources of data,” says Lenker. “Legacy technology platforms are unable to manage this end-to-end. Thus, organisations need to adopt a technology stack that enables users to access, build models with, and share data efficiently. Instead of relying on multiple tools and channels, organisations should approach their enterprise data strategy as a holistic entity and consider how and where the data output will be shared, internally or externally.”

“Multiple taxonomies and physical data movement cause redundant copies, stale data, and incomplete analysis,” adds McGeehan. “Modern application frameworks that unify data intelligence without physical movement, bringing intelligence to data in a secure environment, are key to achieving faster investment research, reducing data management, promoting security and governance, and enabling quicker monetisation.”

Please join us for what we expect will be an informative and enlightening discussion.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

LTX Launches BondGPT Intelligence to Deepen AI Integration in Bond Trading Workflows

LTX, the AI-powered corporate bond trading platform backed by Broadridge Financial Solutions Inc., has launched BondGPT Intelligence, a new capability that embeds generative AI directly into the trading workflow. The functionality is designed to anticipate users’ needs in real time and deliver targeted insights without requiring them to leave the platform. According to Jim Kwiatkowski,...

EVENT

TradingTech Summit London

Now in its 14th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...