About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

A-Team Webinar to Discuss Data Transformation in Quant Research and Trading

Subscribe to our newsletter

Quantitative workflows rely on sourcing, aggregating, normalising and managing data. This can be highly resource-intensive, leading to a situation where some financial institutions with quant shops are more focused on data management than on data science and modeling.

So how can the data ingestion, management, and pipeline processes of quant workflows be streamlined, allowing quants to concentrate on their primary responsibilities such as building models, testing them, exploring alternative data sources, accessing available data models and libraries, and ultimately generating alpha?

This will be the subject of A-Team Group’s upcoming webinar on 14th March 2023, ‘Transforming Data Experiences in Quantitative Research and Trading’, featuring James McGeehan, Industry Principal, Financial Services and Bryan Lenker, Industry Field CTO, Financial Services at Snowflake.

“The data wrangling challenge in data science is significant,” says McGeehan. “With the increasing volume, variety, velocity, and veracity of data, having the ability to process, test and run transactional and analytical workloads and to speed up time to value is crucial, particularly with the real-time data sets needed in the financial markets space. Being able to simplify infrastructure, break down data silos, and enable quick insights is becoming increasingly essential.”

The webinar will look at how leading firms are transforming their data architectures and leveraging native application frameworks to access more data, power quantitative models, uncover unique insights and ultimately add value to their end users and customers.

“One of the key challenges is accessing and utilising multiple sources of data,” says Lenker. “Legacy technology platforms are unable to manage this end-to-end. Thus, organisations need to adopt a technology stack that enables users to access, build models with, and share data efficiently. Instead of relying on multiple tools and channels, organisations should approach their enterprise data strategy as a holistic entity and consider how and where the data output will be shared, internally or externally.”

“Multiple taxonomies and physical data movement cause redundant copies, stale data, and incomplete analysis,” adds McGeehan. “Modern application frameworks that unify data intelligence without physical movement, bringing intelligence to data in a secure environment, are key to achieving faster investment research, reducing data management, promoting security and governance, and enabling quicker monetisation.”

Please join us for what we expect will be an informative and enlightening discussion.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

Beyond the Monolith: Crafting the Agile Trading Stack for the Modern Era

For decades, the central question for any firm designing its trading systems architecture has been a seemingly binary choice: buy an off-the-shelf platform or build a proprietary one in-house? The ‘buy’ camp argued for speed to market and vendor-managed upkeep, while the ‘build’ camp championed bespoke functionality and control over intellectual property. Today, this long-standing...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Enterprise Data Management, 2009 Edition

This year has truly been a year of change for the data management community. Regulators and industry participants alike have been keenly focused on the importance of data with regards to compliance and risk management considerations. The UK Financial Services Authority’s fining of Barclays for transaction reporting failures as a result of inconsistent underlying reference...