About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Broadridge Partners Tookitaki to Deliver AI Based Data Reconciliation Platform

Subscribe to our newsletter

Responding to the ongoing industry challenge of data reconciliation, Broadridge Financial Solutions has released Data Control Intelligent Automation, an artificial intelligence (AI) and machine learning (ML) platform built for deployment across reconciliation, matching and exception management applications. The solution has been developed with Singapore-based Tookitaki, a provider of AI and ML technology.

The platform will allow customers to license modules on the platform that provide intelligent automation applications. The initial modules are Break Management and Recon Perform. Both modules provide enterprise wide capability, working across not only Broadridge reconciliation solutions, but also in-house and third-party developed solutions.

Alastair McGill, general manager of Data Control Solutions at Broadridge, says: “Intelligent automation will drive performance and productivity gains from incumbent reconciliation systems, especially where organisations have multiple vendor solutions in place.”

The Broadridge platform uses a distributed computing framework to deliver a high-performance and scalable matching and exception process. It is agnostic to the underlying reconciliation system and can be deployed on premise, on Broadridge managed servers or in the cloud. The Break Management module accelerates the investigation process, reducing resolution times by continuously improving break classification according to client-defined business reasons. Recon Perform automates reconciliation builds with an automatic matching scheme that uses supervised ML models and continuous matching scheme improvement, saving time and cost for firms managing large volumes of reconciliations. 

The Tookitaki element of the solution includes the company’s patent-pending explainability framework, which offers a ‘glass-box’ approach to ML models that allows users to view decisions made by the platform’s engine through a simple interface.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Mastering Data Lineage for Risk, Compliance, and AI Governance

Financial institutions are under increasing pressure to ensure data transparency, regulatory compliance, and AI governance. Yet many struggle with fragmented data landscapes, poor lineage tracking and compliance gaps. This webinar will explore how enterprise-grade data lineage can help capital markets participants ensure regulatory compliance with obligations such as BCBS 239, CCAR, IFRS 9, SEC requirements...

BLOG

Data’s Evolution Continues From Cost to Core Asset: DMS New York City 2025 Preview

Modern Chief Data Officers are not only the guardians of financial institutions’ data estates, they are also the caretakers of their single-biggest asset. With every part of an organisation’s business now dependent on data, the custody of its digital information is every bit as critical to operations as the management of trading teams or even...

EVENT

RegTech Summit London

Now in its 9th year, the RegTech Summit in London will bring together the RegTech ecosystem to explore how the European capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...