About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Bringing Alternative Data into the Mainstream

Subscribe to our newsletter

By Martijn Groot, Vice President of Marketing and Strategy at Asset Control.

Alternative and unstructured data is rapidly going mainstream. In a recent survey conducted by Adox Research for Asset Control, more than a third of respondents from financial institutions (36%) labelled these new types of data as ‘high importance’ drivers for investment. Alternative data inventory guides and consulting firms are growing in numbers too.

The appeal of alternative data to financial services organisations is clear as it can change the ‘data game’ within these firms and add insight and information not available via traditional content products. The ability of firms to ‘travel across’ different types of data and put them in a meaningful context not only for generating alpha, but also for understanding their current operational status, is an attractive option for any financial services business. That, in a nutshell, explains the growing interest in alternative data. After all, one of the definitions of intelligence and learning is the ability to make new connections.

We are seeing alternative data used to help shape investment decisions. Many quant funds use alternative data to gain an advantage in market insight. But while this kind of data has huge potential there are big gaps in terms of how it is being used today and how it could be in the future. Alternative data is often not structured and organised in the same way as traditional data feeds. Part of the curation job that data vendors do is shifted in-house.

Plotting the Route Forward

Currently though, while more and more alternative or unstructured data is coming into financial services organisations, there is little activity focused on mastering and structuring. In line with the industry shift from data warehouses to data lakes, the work effort between inbound and outbound has shifted. Traditionally, in the data warehouse era, data pre-processing took place to cast the data sets into a predefined schema, making querying very easy once the data was in. In data lakes, data ingestion is fast and easy in the absence of schema constraints, but more effort has to be put into the querying side to connect and process the data to get the answers hidden in the data sets.

That is limiting the insight firms can achieve in using data to address complex problems and it is now starting to give them serious pause for thought. If they are looking at a particular company, for example, how do they bring the structured (traditional equity, CDS, corporate bond data sets) and unstructured data (indirect estimates on sales figures, earnings calls transcripts, news feeds, social media) they have on it together, join it up, and look at all of it as part of a single source in order to make the most informed business decision? The answer is in machine learning techniques that can systemically link data sets, detect outliers and help users get to any answers hidden in the data.

Where we are seeing the most significant developments is in rapidly closing the gap in the tools to integrate these data sources into day-to-day business workflow processes – overcoming the key challenge of bringing structured and unstructured data together. Crudely put, if you can’t put a data source to use, interest in it will rapidly fade.

Adoption areas can range from compliance (early use cases were studying behavioural patterns in large transaction data sets) to gaining an investment edge. In the latter case, there is an analogy that can be drawn between using alternative data sets and building an increasingly accurate and more complete model, map or representation of the financial world. It is rather like moving from a simple compass-based approach to the latest most technologically advanced satnav. Alternative data sets provide additional detail or even additional angles for users to explore.

Furthermore, the tooling required to navigate and map this new data world is increasingly growing in order to prevent users from getting lost and effectively not seeing the wood for the trees. Putting this kind of tooling in place is important. Imposing structure, inferring connections between datasets in structured and unstructured environments and detecting patterns across all these areas is the task of data management. It drives insight and will make the new datasets actionable. A further important area of use cases is risk assessments. The data intensity of risk and reporting processes is likely to continue to grow.

While the amount of alternative data available to financial services firms is growing all the time – and the number of use cases escalating, there is still a lot of work to do to harness and more efficiently manage alternative data and to integrate  or at least align it with more structured data to gain a comprehensive insight into patterns and trends. It will take time for financial services to realise the potential that alternative data offers, but with tools and solutions becoming increasingly capable of aligning unstructured with structured data, the future for this new data class as a driver of business value looks very bright indeed.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Trade the Middle East & North Africa: Connectivity, Data Systems & Processes

In Partnership With As key states across the region seek alternatives to the fossil fuel industries that have driven their economies for decades, pioneering financial centres are emerging in Egypt, United Arab Emirates (UAE), Saudi Arabia and beyond. Exchanges and market intermediaries trading in these centres are adopting cutting-edge technologies to cater to the growing...

BLOG

Clearwater Looking to Bridge Front-to-Back Office Tech Gaps with Acquisitions

It’s difficult for data and technology companies to fully service financial institutions’ front-to-back operations when behemoth providers are offering closely integrated capabilities at scale already. Clearwater Analytics, however, has a strategy that it believes will work not by necessarily competing with the big aggregators, but by working with them and filling gaps that they don’t...

EVENT

TradingTech Briefing New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...