About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Kingland White Paper and Webinar Discuss How to Improve Entity Data Quality

Subscribe to our newsletter

Reliable entity data is critical to business strategy, but it can be difficult to manage, raising questions about how financial institutions can improve the measurement of entity data quality and manage it in a way that best suits their organisation. Answering the questions are emerging cognitive technologies that can identify and automatically fix incorrect entity records, and an entity data quality management process that assesses, remediates, enriches and maintains the data.

There are many critical use cases for entity data, including business decisions, trading, risk, settlement and reporting. From a regulatory standpoint, entity data, hierarchy data and beneficial ownership are also essential to anti-money laundering, Know Your Client (KYC) and client onboarding processes, but getting the data right can be challenging and errors can easily permeate through an organisation.

Entity data quality challenges that crop up time and time again include sourcing required data, data duplication and inconsistency, managing data across multiple legacy systems, and coping with a melange of internal and third-party entity identifiers, including Legal Entity Identifiers.

On the basis that if you can’t measure it you can’t manage it, Kingland Systems has developed advanced analytics and cognitive tools that support entity data quality measurement and management, and allow data quality weaknesses to be discovered and fixed quickly and efficiently.

The company outlines how analytics on top of your data can analyse, visualise, explore, report and make accurate predications about entity data associated with your customers and counterparties, and how cognitive data process automation can vastly improve the efficiency of searching, identifying, extracting and fixing entity data in a White Paper titled Entity Data Quality: New Approaches and the Four Categories of Data Quality Management.

You can also find out more about how to measure and manage entity data quality in an upcoming webinar featuring Tony Brownlee, a partner at Kingland; John Yelle, executive director of enterprise data management at DTCC; and a data practitioner working with entity data.

You can sign up for the webinar here and join the discussion on:

  • The criticality of entity data
  • Challenges to entity data quality
  • Application of analytics and cognitive tools
  • How to measure and manage data quality
  • Beneficial outcomes of high quality data
Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Best approaches for trade and transaction reporting

11 September 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes Compliance practitioners and technology leaders in capital markets face mounting pressure to ensure that reporting processes are efficient, accurate, and aligned with global standards. Market developments and jurisdictional nuances in regulatory frameworks like MiFID II, EMIR, SFTR and MAS create a...

BLOG

ESG Data Tops Executives’ 2025 Shopping Lists

Senior executives at financial institutions expect to direct the biggest boost in their data expenditure plans over the coming year towards ESG information, according to a survey that also found that high-quality data and analytics in all domains is being prioritised for growth. In its third annual Future of Finance survey, Switzerland-based exchange operator SIX also found...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...