About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

IMF Publishes Possible Revisions to its Data Quality Assessment Framework

Subscribe to our newsletter

Given the regulatory community’s crackdown on data quality across the financial services industry, the International Monetary Fund’s (IMF) recently published paper on the improvement of its data quality assessment framework indicators is judiciously timed. In the paper, the IMF’s statistics department suggests improvements to its current set of metrics against which to measure the quality, accuracy and reliability of data gathered during a supervisory endeavour.

Although the IMF’s data quality measurement focus is largely on macroeconomic data for a specific purpose, the lessons in data quality are applicable to much of the other work going on across the regulatory spectrum. Its data quality assessment framework has been developed to provide a framework for a uniform and standardised assessment of data quality and improvements of data compilation and dissemination practices; something that many regulators are focusing on in the search for a better way to evaluate systemic risk.

For example, the European Systemic Risk Board (ESRB) and the US Office of Financial Research will need to regularly evaluate their data quality checking practices, as well as measuring those of the firms they are monitoring. After all, both are charged with collecting the data on which important judgements must be made with regards to systemic risk.

The IMF’s framework currently examines five dimensions of data quality: prerequisites of quality, assurance of integrity, methodological soundness, accuracy and reliability, serviceability and accessibility. The paper, which has been penned by Mico Mrkaic from the IMF’s statistics department, examines whether these are appropriate metrics to use and suggests other possible variables to consider and various practical examples.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Strategies and solutions for unlocking value from unstructured data

Unstructured data accounts for a growing proportion of the information that capital markets participants are using in their day-to-day operations. Technology – especially generative artificial intelligence (GenAI) – is enabling organisations to prise crucial insights from sources – such as social media posts, news articles and sustainability and company reports – that were all but...

BLOG

Semarchy Optimises MDM Product for Use in Azure Purview

Global master data management (MDM) provider Semarchy has deepened its association with Microsoft’s Azure, enabling its clients to integrate more seamlessly into the cloud platform’s Purview tools suite. xDM is now deemed the “best for Azure” service on the platform, said chief product officer Francois-Xavier Nicolas. The company has designed and tooled its offering so...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...