About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Velocimetrics Adds Machine Learning to Market Data Quality Solution

Subscribe to our newsletter

Velocimetrics has integrated machine learning into its market data quality solution, which was introduced about 18 months ago and is designed to accurately assess the timeliness and correctness of market data on a real-time basis. The addition of machine learning automates the task of categorising instruments in terms of what ‘normal’ should look like for each instrument, and supports the solution’s ability to detect and alert users to abnormal patterns among the instruments.

The enhanced functionality initially covers market data inputs to automated equity and foreign exchange trading, although Velocimetrics is planning to adapt its machine learning technology for a client working in futures and options, and says it will support other asset classes in response to client demand.

The software has been tested by a number of European investment banks and is now in full production. The inclusion of machine learning automates tasks that were previously manual and required significant set up time and ongoing administration, and makes the market data quality solution a more plug and play option providing real-time actionable insight at the single instrument and field level.

The software rebases what ‘normal’ looks like for thousands of instruments, each of which must be categorised depending, for example, on how regularly it should tick, what constitutes normal price movement, or how normal behaviour changes in response to specific market calendar events. Having learnt what normal is for all the instruments, the solution can detect and alert any anomalies and recognise the addition or removal of instruments.

Steve Colwill, CEO at Velocimetrics, says that in liquid markets, machine learning can build a sufficient history of an instrument within the market data quality solution in just a few hours. He explains: “Machine learning is often applied to Big Data after the fact. Velocimetrics’ innovation is in applying machine learning to thousands of live streams of data all the time. The mathematical concepts of the machine learning are similar, but the implementation is very different.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

UK Equity Consolidated Tape and EU MiFIR – Two Data Regimes, One Control Problem

The UK’s proposed equity consolidated tape is framed as a response to long-standing fragmentation in equity market data. By aggregating post-trade information and an attributed best bid and offer across trading venues, the tape is intended to provide a single, standardised view of UK equity trading. At the same time, transaction reporting under the Markets...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Trading Regulations Handbook 2022

Welcome to the third edition of A-Team Group’s Trading Regulations Handbook, a publication designed to help you gain a full understanding of regulations that have an impact on your trading operations, data and technology. The handbook provides details of each regulation and its requirements, as well as ‘at-a-glance’ summaries, regulatory timelines and compliance deadlines, and...