A-Team Insight Blogs

The Potential and Promise of AI and Machine Learning in Regtech

After engaging in Peter Moss’s exciting keynote speech, “Garbage in, Garbage Out—Why Regtech is Only Half the Answer” (listen to the Podcast here), discussing the crucial importance of data as a foundation for regulatory compliance, the audience at the recent RegTech Summit New York on November 15, 2018 prepared themselves for a leap into an altogether different discipline: with a panel discussing the potential and promise of AI and machine learning within the regtech industry.

Moderated by Dale Richards, President of Island 20 Ventures, panelists discussed business use cases, how AI and machine learning could be used to augment systems, and barriers to the widespread use of AI and machine learning.

The panel agreed upon working definitions for machine learning and AI when Mary Jane Ajodah, Vice President of FinTech Strategy & Partnerships and Chief Digital Officer at BNY Mellon, distinguished the terms. Ajodah explained to the audience that most machine learning techniques, or training a machine to learn through inference, could generally be taken on by a data science team; while in AI, the machine can learn independently.

The concepts behind the “Garbage in, Garbage Out” address drove some of the discussion, as panelist Ali van Nes, SVP and Senior Director of Regulatory Solutions at Factset, emphasized the point that without organized data underlying AI, it becomes difficult to implement AI. Viktoriia Samatova, Vice President and Head of Research and Product Development at Quantextual Research at State Street, commented that data can be both unstructured and biased, which can impact the quality of the model. Nes identified the weak links for firms as data management and plugging into existing systems.

“If you can’t solve those problems, the best regtech in the world is not going to deliver what you’re looking for,” noted van Nes.

Overbond CEO Vuk Magdelinic proposed that AI could be applied not simply as a trading vehicle, but to fill gaps in datasets.

“There are a lot of problems, especially in very gappy data sets, [such as] unknown correlation sets, so just coming in with a quant model with statistical assumptions and coming in trying to validate all your hypotheses is limited,” explained Magdelinic. “The AI application does give you a pickup in precision and that’s the primary motivation to go through some difficulties now with big data and modeling and the iterative approach that AI requires.”

Currently, van Nes foresees an issue due to a lack of common standards and interpretations across the enforcement of regulations. Due to the lack of standard definitions amongst regulators, it is difficult for AI to solve for the problem.

“If standards do start to bubble up, we’ll have an ecosystem that’s more ripe for AI,” she predicted.

Leave a comment

Your email address will not be published. Required fields are marked *

*

Share article

Related content

WEBINAR

Recorded Webinar: How to Track Data Lineage for Enterprise Data Management

This webinar has passed, but you can view the recording by registering here. Data lineage, the ability to track the source and lifecycle of your reference data, is becoming increasingly important as regulations call for greater transparency and risk managers require confidence in the data feeding their models. What regulations are driving the need for...

BLOG

A Web of Complexity

By Martijn Groot, vice president of product management, Asset Control At the centre of financial services risk management and regulatory compliance is the convergence of data from a huge range of information silos, departments, product lines, customers and risk categories. Risk and finance are at the end of an extensive chain, examining the consolidated threads,...

EVENT

Data Management Summit London

Now in its 8th year, the Data Management Summit (DMS) in London explores the shift to the new world where data is redefining the operating model and firms are seeking to unlock value via data transformation projects for enterprise gain and competitive edge.

GUIDE

Regulatory Data Handbook – Fifth Edition

In response to the popularity of the A-Team Regulatory Data Handbook, we have published a fifth edition outlining the essentials of regulations that are likely to have an impact on data and data management at your organisation. New to this edition is a section on RegTech, covering drivers behind the development of innovative regulatory technology,...