A-Team Insight Blogs

The Potential and Promise of AI and Machine Learning in Regtech

After engaging in Peter Moss’s exciting keynote speech, “Garbage in, Garbage Out—Why Regtech is Only Half the Answer” (listen to the Podcast here), discussing the crucial importance of data as a foundation for regulatory compliance, the audience at the recent RegTech Summit New York on November 15, 2018 prepared themselves for a leap into an altogether different discipline: with a panel discussing the potential and promise of AI and machine learning within the regtech industry.

Moderated by Dale Richards, President of Island 20 Ventures, panelists discussed business use cases, how AI and machine learning could be used to augment systems, and barriers to the widespread use of AI and machine learning.

The panel agreed upon working definitions for machine learning and AI when Mary Jane Ajodah, Vice President of FinTech Strategy & Partnerships and Chief Digital Officer at BNY Mellon, distinguished the terms. Ajodah explained to the audience that most machine learning techniques, or training a machine to learn through inference, could generally be taken on by a data science team; while in AI, the machine can learn independently.

The concepts behind the “Garbage in, Garbage Out” address drove some of the discussion, as panelist Ali van Nes, SVP and Senior Director of Regulatory Solutions at Factset, emphasized the point that without organized data underlying AI, it becomes difficult to implement AI. Viktoriia Samatova, Vice President and Head of Research and Product Development at Quantextual Research at State Street, commented that data can be both unstructured and biased, which can impact the quality of the model. Nes identified the weak links for firms as data management and plugging into existing systems.

“If you can’t solve those problems, the best regtech in the world is not going to deliver what you’re looking for,” noted van Nes.

Overbond CEO Vuk Magdelinic proposed that AI could be applied not simply as a trading vehicle, but to fill gaps in datasets.

“There are a lot of problems, especially in very gappy data sets, [such as] unknown correlation sets, so just coming in with a quant model with statistical assumptions and coming in trying to validate all your hypotheses is limited,” explained Magdelinic. “The AI application does give you a pickup in precision and that’s the primary motivation to go through some difficulties now with big data and modeling and the iterative approach that AI requires.”

Currently, van Nes foresees an issue due to a lack of common standards and interpretations across the enforcement of regulations. Due to the lack of standard definitions amongst regulators, it is difficult for AI to solve for the problem.

“If standards do start to bubble up, we’ll have an ecosystem that’s more ripe for AI,” she predicted.

Leave a comment

Your email address will not be published. Required fields are marked *

*

Share article

Related content

WEBINAR

Recorded Webinar: Driving business value from the LEI

Don’t miss this opportunity to view the recording of this recently held webinar. The Legal Entity Identifier (LEI) has become a viable standard to help financial institutions identify business entities that are party to financial transactions and fulfil regulatory obligations for entity data. Linked to third-party, corporate hierarchy and beneficial ownership data, the potential of...

BLOG

Fed’s Tarullo Once Again Champions Resolution Plans, BCBS Publishes New Recommendations on Subject: Data Challenges in Spotlight

Regular readers of Reference Data Review should be no strangers to the data and practical implementation challenges of resolution, or living wills, regulations that are the talk of the town at the moment. After all, US Federal Reserve governor Daniel Tarullo is just one of the high profile regulators that has been grandstanding about them for some...

EVENT

Data Management Summit London

Now in its 8th year, the Data Management Summit (DMS) in London explores the shift to the new world where data is redefining the operating model and firms are seeking to unlock value via data transformation projects for enterprise gain and competitive edge.

GUIDE

BCBS 239 Data Management Handbook

Our 2015/2016 edition of the BCBS 239 Data Management Handbook has arrived! Printed copies went like hotcakes at our Data Management Summit in New York but you can download your own copy here and get access to detailed information on the  principles and implications of BCBS 239 on Data Management. This Handbook provides an at-a-glance...