A-Team Insight Blogs

The Potential and Promise of AI and Machine Learning in Regtech

After engaging in Peter Moss’s exciting keynote speech, “Garbage in, Garbage Out—Why Regtech is Only Half the Answer” (listen to the Podcast here), discussing the crucial importance of data as a foundation for regulatory compliance, the audience at the recent RegTech Summit New York on November 15, 2018 prepared themselves for a leap into an altogether different discipline: with a panel discussing the potential and promise of AI and machine learning within the regtech industry.

Moderated by Dale Richards, President of Island 20 Ventures, panelists discussed business use cases, how AI and machine learning could be used to augment systems, and barriers to the widespread use of AI and machine learning.

The panel agreed upon working definitions for machine learning and AI when Mary Jane Ajodah, Vice President of FinTech Strategy & Partnerships and Chief Digital Officer at BNY Mellon, distinguished the terms. Ajodah explained to the audience that most machine learning techniques, or training a machine to learn through inference, could generally be taken on by a data science team; while in AI, the machine can learn independently.

The concepts behind the “Garbage in, Garbage Out” address drove some of the discussion, as panelist Ali van Nes, SVP and Senior Director of Regulatory Solutions at Factset, emphasized the point that without organized data underlying AI, it becomes difficult to implement AI. Viktoriia Samatova, Vice President and Head of Research and Product Development at Quantextual Research at State Street, commented that data can be both unstructured and biased, which can impact the quality of the model. Nes identified the weak links for firms as data management and plugging into existing systems.

“If you can’t solve those problems, the best regtech in the world is not going to deliver what you’re looking for,” noted van Nes.

Overbond CEO Vuk Magdelinic proposed that AI could be applied not simply as a trading vehicle, but to fill gaps in datasets.

“There are a lot of problems, especially in very gappy data sets, [such as] unknown correlation sets, so just coming in with a quant model with statistical assumptions and coming in trying to validate all your hypotheses is limited,” explained Magdelinic. “The AI application does give you a pickup in precision and that’s the primary motivation to go through some difficulties now with big data and modeling and the iterative approach that AI requires.”

Currently, van Nes foresees an issue due to a lack of common standards and interpretations across the enforcement of regulations. Due to the lack of standard definitions amongst regulators, it is difficult for AI to solve for the problem.

“If standards do start to bubble up, we’ll have an ecosystem that’s more ripe for AI,” she predicted.

Leave a comment

Your email address will not be published. Required fields are marked *

*

Share article

Related content

WEBINAR

Recorded Webinar: Best practice data management for trading automation

Don’t miss this opportunity to view the recording of this recently held webinar. High quality, consistent and timely data is key to automation of the trading and investment cycle, but while firms are keen to push on with automation, barriers remain. These include sourcing the right data, timely delivery, data quality and ensuring regulatory compliance....

BLOG

PolarLake Announces Reference Data Policy Engine Based on Semantics Technology

PolarLake today announced the availability of the PolarLake Reference Data Policy Engine within the PolarLake Reference Data Distribution (RDD) product. The policy engine uses semantics technologies embedded within a business application to enable business operations and technical staff to define reference data usage control policies. This includes: Data access control policies based on user and...

EVENT

TradingTech Summit New York City

Our TradingTech Summit in New York City is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

Regulatory Data Handbook – Third Edition

Need to know all the essentials about the regulations impacting data management? Welcome to the third edition of our A-Team Regulatory Data Handbook which provides all the essentials about regulations impacting data management. A-Team’s series of Regulatory Data Handbooks are a great way to see at-a-glance: All the regulations that are impacting data management today...