About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks GPUs for Options Risk Analytics

Subscribe to our newsletter

STAC has for the first time published results for its STAC-A2 options risk analytics benchmarks running on Nvidia graphics processing units (GPUs) that point to a near order of magnitude speed up compared to traditional x86 CPUs.

STAC-A2 is a suite of benchmark tests developed by market participants that measure the time to complete the calculation of a set of Greeks values for an option (which measure the sensitivity of the price of an option to changes, such as price of the underlying asset, volatility, interest rates, etc.). Thus, Greeks – which should be recalculated as an options price varies – provide a risk management tool for assessing market impacts on a portfolio of options.

In order to conduct the benchmarks, STAC built a system based on an IBM server with two Intel ‘Sandy Bridge’ x86 processors and two Nvidia K20Xm GPUs. Nvidia coded the STAC benchmarks using the CUDA toolkit, which is designed to implement parallel high performance computing workloads.

Among the several benchmarks calculated, results for STAC-A2.?2.GREEKS.TIME – the time taken to calculate a set of Greeks – showed a 9x improvement compared to benchmarks run on the same class of x86 processors, without GPU acceleration.

While the results are simply indicators of performance, they do point to the value of GPUs to handle complex calculations, which increasingly need to be performed in real time as part of intelligent trading strategies.

As such, GPUs complement other acceleration approaches, such as FPGAs, which have been widely implemented to perform data manipulation functions for low-latency market feed handling and trade execution. Future trading system architectures may well incorporate both FPGAs and GPUs alongside traditional CPUs to provide a best of breed platform for all aspects of a trading strategy.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Enhancing trader efficiency with interoperability – Innovative solutions for automated and streamlined trader desktop and workflows

Traders today are expected to navigate increasingly complex markets using workflows that often lag behind the pace of change. Disconnected systems, manual processes, and fragmented user experiences create hidden inefficiencies that directly impact performance and risk management. Firms that can streamline and modernise the trader desktop are gaining a tangible edge – both in speed...

BLOG

LSEG and Anthropic Partner to Embed Financial Data into AI Workflows

The London Stock Exchange Group (LSEG) has announced a significant collaboration with artificial intelligence firm Anthropic, aimed at embedding its vast reserves of financial data directly into Anthropic’s new “Claude for Financial Services” offering. The move marks a key development in LSEG’s AI strategy, dubbed “LSEG Everywhere,” which focuses on making its trusted, licensed data...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Entity Data Management Handbook – Second Edition

Entity data management is this year’s hot topic as financial firms focus on entity data to gain a better understanding of customers, improve risk management and meet regulatory compliance requirements. Data management programmes that enrich the Legal Entity Identifier with hierarchy data and links to other datasets can also add real value, including new business...