About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks GPUs for Options Risk Analytics

Subscribe to our newsletter

STAC has for the first time published results for its STAC-A2 options risk analytics benchmarks running on Nvidia graphics processing units (GPUs) that point to a near order of magnitude speed up compared to traditional x86 CPUs.

STAC-A2 is a suite of benchmark tests developed by market participants that measure the time to complete the calculation of a set of Greeks values for an option (which measure the sensitivity of the price of an option to changes, such as price of the underlying asset, volatility, interest rates, etc.). Thus, Greeks – which should be recalculated as an options price varies – provide a risk management tool for assessing market impacts on a portfolio of options.

In order to conduct the benchmarks, STAC built a system based on an IBM server with two Intel ‘Sandy Bridge’ x86 processors and two Nvidia K20Xm GPUs. Nvidia coded the STAC benchmarks using the CUDA toolkit, which is designed to implement parallel high performance computing workloads.

Among the several benchmarks calculated, results for STAC-A2.?2.GREEKS.TIME – the time taken to calculate a set of Greeks – showed a 9x improvement compared to benchmarks run on the same class of x86 processors, without GPU acceleration.

While the results are simply indicators of performance, they do point to the value of GPUs to handle complex calculations, which increasingly need to be performed in real time as part of intelligent trading strategies.

As such, GPUs complement other acceleration approaches, such as FPGAs, which have been widely implemented to perform data manipulation functions for low-latency market feed handling and trade execution. Future trading system architectures may well incorporate both FPGAs and GPUs alongside traditional CPUs to provide a best of breed platform for all aspects of a trading strategy.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

SOLVE Acquires MBS Source to Bolster Structured Products Offering

SOLVE, provider of pre-trade data and predictive pricing for fixed income markets, has acquired MBS Source, the data and trading solutions provider for the mortgage- and asset-backed securities (MBS/ABS) market. The acquisition, announced on October 16, 2025, aims to enhance SOLVE’s capabilities in the structured products space by integrating MBS Source’s specialised data and analytics...

EVENT

Data Management Summit London

Now in its 16th year, the Data Management Summit (DMS) in London brings together the European capital markets enterprise data management community, to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

Valuations – Toward On-Demand Evaluated Pricing

Risk and regulatory imperatives are demanding access to the latest portfolio information, placing new pressures on the pricing and valuation function. And the front office increasingly wants up-to-date valuations of hard-to-price securities. These developments are driving a push toward on-demand evaluated pricing capabilities, with pricing teams seeking to provide access to valuations at higher frequency...