About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

NovaSparks’ STAC-M1 Benchmark Highlights Determinism Under Load

Subscribe to our newsletter

A just released STAC Report covering the performance of NovaSparks’ FPGA market data platform highlights not just its processing latency but also the deterministic nature of that latency under different data loads.

The STAC-M1 benchmark (as defined by financial markets participants and administered by the Securities Technology Analysis Center) measures the performance of direct data feed processing solutions according to a number of different criteria, including end-to-end latency and throughput.

The NovaSparks solution uses only FPGA microprocessors in its architecture, in contrast to offerings that augment mainstream x86 processors with FPGA acceleration of certain functions. As such, the company claims its platform is less prone to latency variance – or jitter – compared to its competitors.

The predictable – or deterministic – nature of the NovaSparks platform was borne out by the benchmark tests conducted by STAC, which simulated a Nasdaq TotalView ITCH feed being received at 2x and 20x a typical data rate at market open and close.

According to STAC: “During replay at 20 times recorded market data volumes, the NovaSparks solution demonstrated mean latency of just 1.4 microseconds, along with 99.9th percentile latency of just 2.8 microseconds. Jitter (standard deviation) was just 0.12 microseconds at 2x market rate and 0.15 microseconds at 20x market rate.” See this chart:

 

While for many the push to reduce latency further is not as big a focus as it once was, maintaining deterministic latency is still important for many trading strategies. Keeping latency constant under extreme market conditions has historically been a challenge, and its one that NovaSparks is looking to solve with its FPGA platform.

“Deterministic processing of market data at ultra-low latency rates is a breakthrough for an industry that is constantly re-assessing their ability to trade across all market conditions,” says Michal Sanak, CIO at proprietary trading firm RSJ.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

LTX Launches BondGPT Intelligence to Deepen AI Integration in Bond Trading Workflows

LTX, the AI-powered corporate bond trading platform backed by Broadridge Financial Solutions Inc., has launched BondGPT Intelligence, a new capability that embeds generative AI directly into the trading workflow. The functionality is designed to anticipate users’ needs in real time and deliver targeted insights without requiring them to leave the platform. According to Jim Kwiatkowski,...

EVENT

TradingTech Summit New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

Preparing For Primetime – How to Benefit from the Global LEI

They say time flies when you’re enjoying yourself, and so it seems the industry have been having a blast with its preparations for the introduction of the global legal entity identifier (LEI) next month. But now it’s time to get serious. To date, much of the industry debate has centred on the identifier itself: its...