About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

NovaSparks’ STAC-M1 Benchmark Highlights Determinism Under Load

Subscribe to our newsletter

A just released STAC Report covering the performance of NovaSparks’ FPGA market data platform highlights not just its processing latency but also the deterministic nature of that latency under different data loads.

The STAC-M1 benchmark (as defined by financial markets participants and administered by the Securities Technology Analysis Center) measures the performance of direct data feed processing solutions according to a number of different criteria, including end-to-end latency and throughput.

The NovaSparks solution uses only FPGA microprocessors in its architecture, in contrast to offerings that augment mainstream x86 processors with FPGA acceleration of certain functions. As such, the company claims its platform is less prone to latency variance – or jitter – compared to its competitors.

The predictable – or deterministic – nature of the NovaSparks platform was borne out by the benchmark tests conducted by STAC, which simulated a Nasdaq TotalView ITCH feed being received at 2x and 20x a typical data rate at market open and close.

According to STAC: “During replay at 20 times recorded market data volumes, the NovaSparks solution demonstrated mean latency of just 1.4 microseconds, along with 99.9th percentile latency of just 2.8 microseconds. Jitter (standard deviation) was just 0.12 microseconds at 2x market rate and 0.15 microseconds at 20x market rate.” See this chart:

 

While for many the push to reduce latency further is not as big a focus as it once was, maintaining deterministic latency is still important for many trading strategies. Keeping latency constant under extreme market conditions has historically been a challenge, and its one that NovaSparks is looking to solve with its FPGA platform.

“Deterministic processing of market data at ultra-low latency rates is a breakthrough for an industry that is constantly re-assessing their ability to trade across all market conditions,” says Michal Sanak, CIO at proprietary trading firm RSJ.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Data platform modernisation: Best practice approaches for unifying data, real time data and automated processing

Date: 17 March 2026 Time: 10:00am ET / 3:00pm London / 4:00pm CET Duration: 50 minutes Financial institutions are evolving their data platform modernisation programmes, moving beyond data-for-cloud capabilities and increasingly towards artificial intelligence-readiness. This has shifted the data management focus in the direction of data unification, real-time delivery and automated governance. The drivers of...

BLOG

BridgePort Launches BridgePort Analytics with AI-Driven Exchange Intelligence Assistant

BridgePort, the middleware coordination layer for off-exchange settlement (OES) in institutional crypto, has launched BridgePort Analytics, an exchange intelligence platform designed to support institutional trading firms operating in OES environments. The platform includes Bridget, an AI-powered assistant that allows users to query execution and venue data using natural language. According to the company, BridgePort Analytics...

EVENT

RegTech Summit London

Now in its 9th year, the RegTech Summit in London will bring together the RegTech ecosystem to explore how the European capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Corporate Actions

Corporate actions has been a popular topic of discussion over the last few months, with the DTCC’s plans for XBRL and ISO interoperability, as well as the launch of Swift’s new self-testing service for corporate actions messaging, STaQS, among others. However, it has not been a good start to the year for many of the...