About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

NovaSparks Adds Data Feeds; Outlines FPGA Matrix Architecture; Details Performance

Subscribe to our newsletter

NovaSparks has added support for an additional five data feeds to its Gen2 appliance, while at the same time outlining the FPGA matrix architecture that the appliance implements in order to handle multiple feeds and application functionality, and detailing its latency profile.

The new data feed support comprises feeds from Bats (BYX and BZX), Direct Edge (NG-A and NG-X), NYSE Arca, the London Stock Exchange (Level 2) and Turquoise (Level 2). Support for Nasdaq, CME and Eurex was already available. NovaSparks says the choice of the added data feeds was driven by customers, though it is currently focusing on providing support for equities and futures exchanges in Europe and North America.

Gen2 is a 2U rackable appliance based on FPGAs from Altera – up to three per appliance. Multiple appliances can be inter-connected to scale up the matrix to support multiple data feeds and trading functions.

The company has released data detailing the latency profile of its matrix architecture. “Our FPGA Market Data Matrix Feed Handlers process the cash equity feeds in less than 700 nanoseconds even during micro bursts and message volumes peaks,” says NovaSparks CEO Yves Charles.

The chart below details the latency observed when a full day of ITCH message data – some 280 million packets – is replayed in just eight minutes.

 

NovaSparks attributes the consistency of latency under load to the matrix architecture’s  implementation of a full set of functions in multiple FPGAs, as opposed to other approaches where FPGAs are used simply for basic acceleration, such as network protocol handling and data transformation, while most of the processing is performed on a traditional CPU.

In the NovaSparks architecture, FPGAs are used for UDP, IP and network handling, message parsing, symbol filtering, book building and fan out to downstream applications. Yves says that the company will this month roll out a proof of concept implementation running trading algorithms on FPGAs within the matrix.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

Beyond the Monolith: Crafting the Agile Trading Stack for the Modern Era

For decades, the central question for any firm designing its trading systems architecture has been a seemingly binary choice: buy an off-the-shelf platform or build a proprietary one in-house? The ‘buy’ camp argued for speed to market and vendor-managed upkeep, while the ‘build’ camp championed bespoke functionality and control over intellectual property. Today, this long-standing...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Entity Data Management Handbook – Fourth Edition

Welcome to the fourth edition of A-Team Group’s Entity Data Management Handbook sponsored by entity data specialist Bureau van Dijk, a Moody’s Analytics company. As entity data takes a central role in business strategies dedicated to making the customer experience markedly better, this handbook delves into the detail of everything you need to do to...