About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

MemSQL Ships Distributed In-Memory Database

Subscribe to our newsletter

Following up on its unveiling in June of last year, San Francisco-based MemSQL has released a distributed version of its eponymous in-memory database, aimed at introducing big data scalability to the low latency performance provided by the initial release.

With its distributed version, MemSQL is providing in-memory performance, with access via the common SQL database access language. The company says the offering is already in use for applications, such as operational analytics, network security, real-time recommendations, and risk management.

MemSQL scales out across commodity hardware, and has already been deployed in production use across hundreds of nodes, with sub-second response times on terabytes of data. Data redundancy and security is provided by duplication across nodes, by checkpoints to physical disk, and across data centres.

The company has worked with Morgan Stanley to create a real-time bond data application that is used by 25,000 financial advisors nationwide. MemSQL allows the development team to balance high-velocity data streaming into the system with a large number of concurrent queries. With MemSQL, Morgan Stanley has been able to manage big data workloads, accelerate development and reduce total cost of ownership by scaling on commodity hardware.

Also new is MemSQL Watch, a browser-based interface for software and hardware monitoring, and system configuration.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The future of market data – Harnessing cloud and AI for market data distribution and consumption

Market data is the lifeblood of trading, but as data volumes grow and real-time demands increase, traditional approaches to distribution and consumption are being pushed to their limits. Cloud technology and AI-driven solutions are rapidly transforming how financial institutions manage, process, and extract value from market data, offering greater scalability, efficiency, and intelligence. This webinar,...

BLOG

Past, Present, and Future of AI and Machine Learning in Trading and Investment Management

On this episode of FinTech Focus TV recorded at A-Team Group’s Buy AND Build Summit, Toby Babb of Harrington Starr sits down with David Marcos, Founder and Managing Partner at Quantoro Technologies, to explore how AI agents are redefining trading, portfolio management, and the investor experience. From simplifying complex investment strategies to the rise of...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

Enterprise Data Management, 2010 Edition

The global regulatory community has become increasingly aware of the data management challenge within financial institutions, as it struggles with its own challenge of better tracking systemic risk across financial markets. The US regulator in particular is seemingly keen to kick off a standardisation process and also wants the regulatory community to begin collecting additional...