The leading knowledge platform for the financial technology industry
The leading knowledge platform for the financial technology industry

A-Team Insight Blogs

Datactics Accelerates Business Development, Scales Global Presence, Takes AI Platform to the Next Level

Datactics is about to close third round funding of £2 million. The funding comes from the company’s previous investors – Par Equity, The Bank of Ireland Kernel Capital Group Fund, and Clarendon Fund Managers – and will be used to accelerate business development, strengthen the company’s global presence, and take its AI and machine learning (ML) platform for data quality and matching to the next level.

The company has secured five new customers over the past year, despite the coronavirus pandemic, with three in the financial services sector, one in government, and one in insurance – a first for Datactics. In total it has over 100 active installations, of which about 20 are in financial services. CEO Stuart Harvey notes a resurgence of interest in data quality, as well as increased demand for the company’s solutions based on their fit with client problems.

Discussing the additional funding, Harvey says: “The maturity of the Datactics platform, including multiple AI apps, and a strong delivery team of about 60 people, mean we are ready to scale, here in Europe, but also in the US and Asia Pacific.”

The company also plans to scale through technology partnerships that will extend its domain expertise, and system integration partnerships that will take it into new region. Two graduates have also been recruited recently as part of the Northern Ireland Graduate to Export programme, with one exploring market opportunities in Japan and the other supporting clients and helping to grow the business in New York, Covid-19 permitting.

From a technology perspective, Datactics continues to build out its platform and machine learning solutions in response to client needs and under the auspices of head of AI, Fiona Browne. The company’s latest ML additions to the platform are data matching, error detection, dataset labelling and knowledge graph capability. Browne highlights the importance of automated data labelling, often a manual process, to speed up an ML model’s learning, and the platform’s ability to ingest company data and cleanse, dedupe and match it before it is used in a client’s knowledge graph.

Next up, Browne and her team are working on an augmented data quality app that will recommend data quality rules based on underlying datasets, as well as a break analysis app that uses predictive analytics to understand where data is breaking and predict future breaks by learning from previous SME resolutions. Browne says: “These two use cases of the AI engine are geared to create efficiencies and make sure the best information gets to the right people in the least amount of time.”

Datactics use natural language processing (NLP) techniques to develop ML models, and has built in Lime and Shap for model explainability. These tools do similar things in terms of explaining why a model has made a particular decision, but are based on different mathematical approaches. That said, Browne comments: “Machine learning models alone are not sufficient, AI must be explainable.”

Related content

WEBINAR

Recorded Webinar: Evolution of data management for the buy-side 2021

The buy-side faced a barrage of regulation in 2020 and is now under pressure to make post-Brexit adjustments and complete LIBOR transition by the end of 2021. To ensure compliance and ease the burden of in-house data management, many firms turned to outsourcing and managed services. But there is more to come, as buy-side firms...

BLOG

KX Takes kdb+ to the Next Level with KX Insights Cloud Native Streaming Analytics

KX has released KX Insights, a cloud native streaming analytics solution that provides fast, scalable real-time data insights without the capex and maintenance burden of on-premise infrastructure. KX Insights is built on the company’s cloud version of the kdb+ time series database and uses a microservices architecture that supports not only new KX users but...

EVENT

LIVE Briefing: ESG Data Management – A Strategic Imperative

This breakfast briefing will explore challenges around assembling and evaluating ESG data for reporting and the impact of regulatory measures and industry collaboration on transparency and standardisation efforts. Expert speakers will address how the evolving market infrastructure is developing and the role of new technologies and alternative data in improving insight and filling data gaps.

GUIDE

Entity Data Management Handbook – Seventh Edition

Sourcing entity data and ensuring efficient and effective entity data management is a challenge for many financial institutions as volumes of data rise, more regulations require entity data in reporting, and the fight again financial crime is escalated by bad actors using increasingly sophisticated techniques to attack processes and systems. That said, based on best...