About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Wolters Kluwer Pushes Forward AI Agenda With New Proof of Concept

Subscribe to our newsletter

In the latest step forward in the field of AI-driven regulatory reporting, Wolters Kluwer has completed a successful Proof of Concept (PoC) showing that a machine can learn how to take over any end-to-end regulatory reporting process for financial institutions and regulators, across every jurisdiction, by using historical source data and its corresponding regulatory submissions.

As global regulators impose ever more rigorous reporting obligations on financial institutions, regulatory reporting has become more onerous, with an increased risk of potential error. Emerging regulations require more prescriptive and highly granular data sets, reported in increasing frequencies. Financial institutions are therefore looking to new technologies, such as ML, to relieve these regulatory reporting burdens.

The latest PoC from Wolters Kluwer found that it is possible to build predictive models with high accuracy and flexibility that complement human judgement and oversight, making it likely that production reporting mechanisms will incorporate Machine Learning (ML) in the near future.

The PoC was trained on two separate end-to-end regulatory reporting processes: the Monetary Authority of Singapore’s MAS 610 and APRA’s Economic and Financial Statistics. After just a few minutes of training, a total of 250,000 records of previously unseen raw data (the ‘internal vocabulary’) containing 260 features (input) and 240 corresponding labels (output) were predicted with very high accuracy – in many cases, the corresponding regulatory reporting output was predicted with >99% accuracy.

“If humans are capable of designing processes which ultimately convert the financial institutions’ raw data into structured regulatory submissions, I see no reason why machines can’t learn to do the same. Our PoC shows that machines can indeed learn to take over any end-to-end regulatory reporting process for any financial institution and any regulator in any jurisdiction,” comments Wouter Delbaere, Director of APAC Regulatory Reporting for Wolters Kluwer FRR. “AI has the potential of disrupting today’s regulatory reporting landscape; rather than taking the traditional approach of explicitly creating deterministic logic, financial institutions can instead adopt machine learning to replace any existing regulatory reporting process with significantly reduced time and effort.”

Last year Wolters Kluwer FRR launched a software-as-a-service (SaaS) Regulatory Reporting solution, and also unveiled a major upgrade to its OneSumX Regulatory Engine.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Best practice approaches to data management for regulatory reporting

Effective regulatory reporting requires firms to manage vast amounts of data across multiple systems, regions, and regulatory jurisdictions. With increasing scrutiny from regulators and the rising complexity of financial instruments, the need for a streamlined and strategic approach to data management has never been greater. Financial institutions must ensure accuracy, consistency, and timeliness in their...

BLOG

Don’t Forget People and Process when Deploying Agentic AI

When the financial industry talks ‘agentic AI’, there’s a tendency for the conversation to quickly devolve into cutting-edge technologies – large language models (LLMs), neural networks, generative algorithms (GenAI) etc. Agentic AI is really about transforming the business processes that define firms’ operations and the roles that supervise them. Success is dependent on more than...

EVENT

TradingTech Briefing New York

Our TradingTech Briefing in New York is aimed at senior-level decision makers in trading technology, electronic execution, trading architecture and offers a day packed with insight from practitioners and from innovative suppliers happy to share their experiences in dealing with the enterprise challenges facing our marketplace.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...