About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Will SLA’s be Re-Evaluated After Tumultuous Times Highlight Response Issues?

Subscribe to our newsletter

Service level agreements were a key topic in this morning’s roundtable discussions at FIMA 2008, with one data manager at a Tier 1 financial institution suggesting that many SLA’s are now likely to be revisited in order to achieve better responses from their data suppliers after the current market conditions highlighted the need for faster answers to questions from the vendors.

SLAs between data vendors and their financial institution clients can become elaborate, but the more elaborate they get, the more it will cost to support, said a major vendor representative. When agreeing SLAs for offshored services, it is also essential to look at other factors such as time zones and turn around times on queries. But what is essential in crafting an SLA, is to focus on the key points of service that you would like to achieve, rather than trying to cover everything.

While vendors will not provide any guarantees on the accuracy of the data itself for a number of reasons, what they do provide is guarantees on the level of service they provide, in areas such as reacting to exceptions. So there is a certain level of responsiveness that is required – such as a response within an hour for up to 20 requests in the hour – to satisfy the SLA agreement.

The vendor/client SLA is usually a subset of SLAs that the client has with its own clients, said a buy side data manager in the discussion. When he is evaluating data products, the criteria are cost, coverage and service, with service receiving the largest weighting. But this is then pushed back by his company’s executives who put more emphasis on cost and coverage. So it’s necessary to find a balance between them among suppliers.

Interestingly, the major vendor said that analysing metrics over a long period of time, like 24 months to see which vendor is right or wrong on a piece of data, the average is between 48.5% to 51.5%. In other words, all vendors have a similar level of errors averaged out across market segments, sources or processes.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: End-to-End Lineage for Financial Services: The Missing Link for Both Compliance and AI Readiness

The importance of complete robust end-to-end data lineage in financial services and capital markets cannot be overstated. Without the ability to trace and verify data across its lifecycle, many critical workflows – from trade reconciliation to risk management – cannot be executed effectively. At the top of the list is regulatory compliance. Regulators demand a...

BLOG

S&P Global Data via Cloud: Unlocking Real-Time, Scalable Insights with Snowflake and Databricks Delta Sharing

As organisations accelerate their cloud migration strategies to manage growing volumes of structured and unstructured data, demand is rising for secure, real-time, cloud-native access to trusted datasets. Leveraging Snowflake and Databricks Delta Sharing, S&P Global provides a scalable, agile foundation that allows organizations to directly access and query S&P Global and curated third-party datasets without...

EVENT

AI in Capital Markets Summit London

Now in its 2nd year, the AI in Capital Markets Summit returns with a focus on the practicalities of onboarding AI enterprise wide for business value creation. Whilst AI offers huge potential to revolutionise capital markets operations many are struggling to move beyond pilot phase to generate substantial value from AI.

GUIDE

MiFID II Handbook – Second Edition

With the compliance deadline for Markets in Financial Instruments Directive II (MiFID II) just over two months away, A-Team Group has updated its MiFID II handbook to bring you the latest details on the regulation’s compliance requirements. Version 2 of the handbook, commissioned by Thomson Reuters, also includes new sections covering data sourcing and data...