About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

TORA Introduces AlgoWheel to Help Firms Create Systematic Best Ex Processes

Subscribe to our newsletter

TORA has introduced an AI-powered AlgoWheel designed to help firms create scalable and systematic best execution processes in line with the requirements of Markets in Financial Instruments Directive II (MiFID II).

The TORA AlgoWheel is a quantitative execution strategy optimiser that uses AI technology to automate low-touch order execution or provide real-time market intelligence for orders needing human intervention. It provides a feedback loop that uses historical and real-time order-level execution information to identify the optimal broker algo and inform the trading decision making process.

Historical trade execution information is captured by TORA’s post-trade transaction cost analysis (TCA) solution, while the company’s AI-driven pre-trade TCA tool is used to evaluate each order. The pre-trade TCA platform is built on a convolutional neural network that uses machine learning to increase its estimation precision over time.

Low-touch orders can be automatically executed by TORA’s Strategy Server using the recommended broker algo combination. Alternatively, the recommended broker algo can be displayed directly in the TORA trading blotter for orders where a trader wants to be involved.

When using the automated process, the Strategy Server is configurable to enable traders to customise the execution process using any number of data inputs. For example, traders can set a trading strategy to begin at a time of day, when a stock hits a certain price or pending certain overall market conditions. The server can also be configured to send a certain percentage of orders to different broker algos to help avoid sample bias.

Chris Jenkins, managing director at TORA, says: “To remain competitive in today’s market, traders need to focus their attention where they can add most value. To do that, they need an automated trading solution they trust can achieve best execution for the bulk of their orders.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

BridgePort Launches BridgePort Analytics with AI-Driven Exchange Intelligence Assistant

BridgePort, the middleware coordination layer for off-exchange settlement (OES) in institutional crypto, has launched BridgePort Analytics, an exchange intelligence platform designed to support institutional trading firms operating in OES environments. The platform includes Bridget, an AI-powered assistant that allows users to query execution and venue data using natural language. According to the company, BridgePort Analytics...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...