About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

The Potential and Pitfalls of Large Language Models

Subscribe to our newsletter

By Tony Seale, Knowledge Graph Engineer at Tier 1 Bank.

Large Language Models (LLMs) like ChatGPT possess enormous power, stemming from their capability to ingest and compress vast amounts of general information gathered from the web. However, this capability is general rather than tailored to your specific business needs. To effectively utilise these models in a context relevant to your business, it’s essential to provide them with specific information and data related to your sector and niche. After all, if the general LLM knows everything your business knows – what’s the point of your business? But here’s the kicker: if you put garbage in, you get garbage out. Disorganised data will result in vague or even inaccurate answers.

We can state that the quality of your AI offering will directly depend on the quality of the data you input into the LLM. In other words, the quality, connectivity, organisation, and availability of information within your organisation are key factors in determining the success of your main generative AI use cases. However, there is a harsh truth to acknowledge; the data estates of most large organisations are currently very disorganised.

Given that the organisation of our data is directly related to the quality of our LLM’s responses, perhaps our primary AI strategy should actually be to double down on our data strategy!

Organising your total data estate is no trivial task, but I believe the great AI acceleration will soon make it necessary. While there are no simple answers, here are some links offering insights into building a semantic data mesh, an architectural blueprint that could help you navigate this complex journey:

Subscribe to our newsletter

Related content


Recorded Webinar: Potential and pitfalls of large language models and generative AI apps

Large language models (LLMs) and Generative AI applications are a hot topic in financial services, with vendors offering solutions, financial institutions adopting the technologies, and sceptics questioning their outcomes. That said, they are here to stay, and it may be that early adopters of Generative AI apps could gain not only operational benefits, but also...


Murex and Alveo Partner to Provide Murex Users with Alveo Product Master Datasets

Alveo, a provider of cloud-based market data management services, and Murex, a vendor of trading, investment management, risk and processing solutions, have partnered to bring together Murex’s MX.3 front-to-back-to-risk investment management system (IMS) and Alveo’s financial data management solution to support client data operations and provide MX.3 users with accurate, dependable and auditable data. The...


Data Management Summit New York City

Now in its 14th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.


Regulatory Data Handbook 2022/2023 – Tenth Edition

Welcome to the tenth edition of A-Team Group’s Regulatory Data Handbook, a publication that has tracked new regulations, amendments, implementation and data management requirements as regulatory change has impacted global capital markets participants over the past 10 years. This edition of the handbook includes new regulations and highlights some of the major regulatory interventions challenging...