About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

The Potential and Pitfalls of Large Language Models

Subscribe to our newsletter

By Tony Seale, Knowledge Graph Engineer at Tier 1 Bank.

Large Language Models (LLMs) like ChatGPT possess enormous power, stemming from their capability to ingest and compress vast amounts of general information gathered from the web. However, this capability is general rather than tailored to your specific business needs. To effectively utilise these models in a context relevant to your business, it’s essential to provide them with specific information and data related to your sector and niche. After all, if the general LLM knows everything your business knows – what’s the point of your business? But here’s the kicker: if you put garbage in, you get garbage out. Disorganised data will result in vague or even inaccurate answers.

We can state that the quality of your AI offering will directly depend on the quality of the data you input into the LLM. In other words, the quality, connectivity, organisation, and availability of information within your organisation are key factors in determining the success of your main generative AI use cases. However, there is a harsh truth to acknowledge; the data estates of most large organisations are currently very disorganised.

Given that the organisation of our data is directly related to the quality of our LLM’s responses, perhaps our primary AI strategy should actually be to double down on our data strategy!

Organising your total data estate is no trivial task, but I believe the great AI acceleration will soon make it necessary. While there are no simple answers, here are some links offering insights into building a semantic data mesh, an architectural blueprint that could help you navigate this complex journey:

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unpacking Stablecoin Challenges for Financial Institutions

The stablecoin market is experiencing unprecedented growth, driven by emerging regulatory clarity, technological maturity, and rising global demand for a faster, more secure financial infrastructure. But with opportunity comes complexity, and a host of challenges that financial institutions need to address before they can unlock the promise of a more streamlined financial transaction ecosystem. These...

BLOG

Innovative Systems Wins Best Data Solution for Regulatory Compliance Award at A-Team Group’s DMI USA Awards 2025

Innovative Systems has won the award for Best Data Solution for Regulatory Compliance for its FinScan Enhance solution in the Data Management Insight USA Awards 2025. The awards recognise established providers and innovative newcomers who offer solutions that are providing leading data management solutions, services and consultancy to capital markets participants across Europe. Winners are selected...

EVENT

Eagle Alpha Alternative Data Conference, London, hosted by A-Team Group

Now in its 8th year, the Eagle Alpha Alternative Data Conference managed by A-Team Group, is the premier content forum and networking event for investment firms and hedge funds.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...