About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks IBM’s Hadoop

Subscribe to our newsletter

STAC – aka the Securities Technology Analysis Center – has benchmarked IBM’s proprietary Platform Symphony implementation of Hadoop MapReduce, versus the standard open source offering, to compare their respective performance. On average, IBM’s implementation performed jobs 7.3 times faster than the standard, reducing total processing time by a factor of six.

Better known for its benchmarking of low-latency trading platforms, STAC leveraged the Statistical Workload Injector for MapReduce (SWIM), developed by the University of California at Berkeley. SWIM provides a large set of diverse MapReduce jobs based on production Hadoop traces obtained from Facebook, along with information to enable characterisation of each job. STAC says it undertook the benchmarking because many financial markets firms are deploying Hadoop.

The hardware environment for the testbed consisted of 17 IBM compute servers and one master server communicating over gigabit Ethernet. STAC compared Hadoop version 1.0.1 to Symphony version 5.2. Both systems ran Red Hat Linux and used largely default configurations.

IBM attributes the superior performance of its offering in part to its scheduling speed. IBM’s Hadoop is API-compatible with the open source offering but runs on the Symphony grid middleware that became IBM’s with its aquisition of Platform Computing, which closed in January of this year.

For more information on STAC’s IBM Hadoop benchmark, see here.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: From Data to Alpha: AI Strategies for Taming Unstructured Data

Date: 16 April 2026 Time: 9:00am ET / 2:00pm London / 3:00pm CET Duration: 50 minutes Unstructured data and text now accounts for the majority of information flowing through financial markets organisations, spanning research content, corporate disclosures, communications, alternative data, and internal documents. While AI has created new opportunities to extract signals, many firms are...

BLOG

AI Personalization in Trading: Where We Are and Where We’re Heading

Ivan Kunyankin, Data Science Team Lead at Devexperts. AI may have started out its brokerage career in back-office, enhancing operational efficiency by providing human teams with actionable client insights, but it’s now being promoted to more sensitive client-facing roles. As AI tools continue to evolve and become normalized in more areas of daily life, financial...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Putting the LEI into Practice

Hundreds of thousands of pre-Legal Entity Identifiers (LEIs) have been issued by pre-Local Operating Units (LOUs) in the Global LEI System (GLEIS), and the standard entity identifier has been mandated for use by regulators in both the US and Europe. As more pre-LEIs are issued ahead of the establishment of the global systems’ Central Operating...