About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks IBM’s Hadoop

Subscribe to our newsletter

STAC – aka the Securities Technology Analysis Center – has benchmarked IBM’s proprietary Platform Symphony implementation of Hadoop MapReduce, versus the standard open source offering, to compare their respective performance. On average, IBM’s implementation performed jobs 7.3 times faster than the standard, reducing total processing time by a factor of six.

Better known for its benchmarking of low-latency trading platforms, STAC leveraged the Statistical Workload Injector for MapReduce (SWIM), developed by the University of California at Berkeley. SWIM provides a large set of diverse MapReduce jobs based on production Hadoop traces obtained from Facebook, along with information to enable characterisation of each job. STAC says it undertook the benchmarking because many financial markets firms are deploying Hadoop.

The hardware environment for the testbed consisted of 17 IBM compute servers and one master server communicating over gigabit Ethernet. STAC compared Hadoop version 1.0.1 to Symphony version 5.2. Both systems ran Red Hat Linux and used largely default configurations.

IBM attributes the superior performance of its offering in part to its scheduling speed. IBM’s Hadoop is API-compatible with the open source offering but runs on the Symphony grid middleware that became IBM’s with its aquisition of Platform Computing, which closed in January of this year.

For more information on STAC’s IBM Hadoop benchmark, see here.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

AiMi Unveils Agentic Workflow to Automate Mandatory Market Changes

AiMi, specialists in AI for trading and market data operations, has launched an end-to-end agentic workflow designed to streamline how firms manage mandatory changes from exchanges and market data vendors. The new capabilities build on AiMi’s existing AI-enabled platform, introducing a dynamic suite of digital agents that automate the tracking, review, and triage of market...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

Enterprise Data Management, 2009 Edition

This year has truly been a year of change for the data management community. Regulators and industry participants alike have been keenly focused on the importance of data with regards to compliance and risk management considerations. The UK Financial Services Authority’s fining of Barclays for transaction reporting failures as a result of inconsistent underlying reference...