About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks IBM’s Hadoop

Subscribe to our newsletter

STAC – aka the Securities Technology Analysis Center – has benchmarked IBM’s proprietary Platform Symphony implementation of Hadoop MapReduce, versus the standard open source offering, to compare their respective performance. On average, IBM’s implementation performed jobs 7.3 times faster than the standard, reducing total processing time by a factor of six.

Better known for its benchmarking of low-latency trading platforms, STAC leveraged the Statistical Workload Injector for MapReduce (SWIM), developed by the University of California at Berkeley. SWIM provides a large set of diverse MapReduce jobs based on production Hadoop traces obtained from Facebook, along with information to enable characterisation of each job. STAC says it undertook the benchmarking because many financial markets firms are deploying Hadoop.

The hardware environment for the testbed consisted of 17 IBM compute servers and one master server communicating over gigabit Ethernet. STAC compared Hadoop version 1.0.1 to Symphony version 5.2. Both systems ran Red Hat Linux and used largely default configurations.

IBM attributes the superior performance of its offering in part to its scheduling speed. IBM’s Hadoop is API-compatible with the open source offering but runs on the Symphony grid middleware that became IBM’s with its aquisition of Platform Computing, which closed in January of this year.

For more information on STAC’s IBM Hadoop benchmark, see here.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

Platform-Led Strategies for Solving Market Data Fragmentation, Cost and Governance Challenges

For any Chief Data Officer or Head of Trading Technology, the line item for market data is both one of the largest and most complex to manage. The challenge is no longer simply about plumbing feeds into applications. It is a strategic imperative to control spiralling costs, integrate a chaotic mix of traditional and alternative...

EVENT

AI in Capital Markets Summit London

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...