About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks GPUs for Options Risk Analytics

Subscribe to our newsletter

STAC has for the first time published results for its STAC-A2 options risk analytics benchmarks running on Nvidia graphics processing units (GPUs) that point to a near order of magnitude speed up compared to traditional x86 CPUs.

STAC-A2 is a suite of benchmark tests developed by market participants that measure the time to complete the calculation of a set of Greeks values for an option (which measure the sensitivity of the price of an option to changes, such as price of the underlying asset, volatility, interest rates, etc.). Thus, Greeks – which should be recalculated as an options price varies – provide a risk management tool for assessing market impacts on a portfolio of options.

In order to conduct the benchmarks, STAC built a system based on an IBM server with two Intel ‘Sandy Bridge’ x86 processors and two Nvidia K20Xm GPUs. Nvidia coded the STAC benchmarks using the CUDA toolkit, which is designed to implement parallel high performance computing workloads.

Among the several benchmarks calculated, results for STAC-A2.?2.GREEKS.TIME – the time taken to calculate a set of Greeks – showed a 9x improvement compared to benchmarks run on the same class of x86 processors, without GPU acceleration.

While the results are simply indicators of performance, they do point to the value of GPUs to handle complex calculations, which increasingly need to be performed in real time as part of intelligent trading strategies.

As such, GPUs complement other acceleration approaches, such as FPGAs, which have been widely implemented to perform data manipulation functions for low-latency market feed handling and trade execution. Future trading system architectures may well incorporate both FPGAs and GPUs alongside traditional CPUs to provide a best of breed platform for all aspects of a trading strategy.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The future of market data – Harnessing cloud and AI for market data distribution and consumption

Market data is the lifeblood of trading, but as data volumes grow and real-time demands increase, traditional approaches to distribution and consumption are being pushed to their limits. Cloud technology and AI-driven solutions are rapidly transforming how financial institutions manage, process, and extract value from market data, offering greater scalability, efficiency, and intelligence. This webinar,...

BLOG

Genesis Launches MCP Server to Bridge AI Agents with Enterprise Applications

Genesis Global, the application development framework provider, has introduced a Model Context Protocol (MCP) Server to provide a controlled and compliant interface between large language models (LLMs) and enterprise applications built on its platform. The MCP Server supports the emerging open MCP standard, which aims to unify how software applications deliver operational and contextual data to...

EVENT

TradingTech Summit London

Now in its 15th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

Data Lineage Handbook 2019

Welcome to our latest handbook on data lineage, a critical concern for data managers working to achieve regulatory compliance, deliver operational gains, and provide meaningful value to the business. The handbook covers the complete scope of data lineage, with a view to helping you win management buy-in and budget, decide whether to build or buy...