About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

STAC Benchmarks GPUs for Options Risk Analytics

Subscribe to our newsletter

STAC has for the first time published results for its STAC-A2 options risk analytics benchmarks running on Nvidia graphics processing units (GPUs) that point to a near order of magnitude speed up compared to traditional x86 CPUs.

STAC-A2 is a suite of benchmark tests developed by market participants that measure the time to complete the calculation of a set of Greeks values for an option (which measure the sensitivity of the price of an option to changes, such as price of the underlying asset, volatility, interest rates, etc.). Thus, Greeks – which should be recalculated as an options price varies – provide a risk management tool for assessing market impacts on a portfolio of options.

In order to conduct the benchmarks, STAC built a system based on an IBM server with two Intel ‘Sandy Bridge’ x86 processors and two Nvidia K20Xm GPUs. Nvidia coded the STAC benchmarks using the CUDA toolkit, which is designed to implement parallel high performance computing workloads.

Among the several benchmarks calculated, results for STAC-A2.?2.GREEKS.TIME – the time taken to calculate a set of Greeks – showed a 9x improvement compared to benchmarks run on the same class of x86 processors, without GPU acceleration.

While the results are simply indicators of performance, they do point to the value of GPUs to handle complex calculations, which increasingly need to be performed in real time as part of intelligent trading strategies.

As such, GPUs complement other acceleration approaches, such as FPGAs, which have been widely implemented to perform data manipulation functions for low-latency market feed handling and trade execution. Future trading system architectures may well incorporate both FPGAs and GPUs alongside traditional CPUs to provide a best of breed platform for all aspects of a trading strategy.

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: Data platform modernisation: Best practice approaches for unifying data, real time data and automated processing

Date: 17 March 2026 Time: 10:00am ET / 3:00pm London / 4:00pm CET Duration: 50 minutes Financial institutions are evolving their data platform modernisation programmes, moving beyond data-for-cloud capabilities and increasingly towards artificial intelligence-readiness. This has shifted the data management focus in the direction of data unification, real-time delivery and automated governance. The drivers of...

BLOG

Bloomberg Enhances RMS Enterprise to Unlock Proprietary Models and Strengthen Research Oversight

Bloomberg has announced significant enhancements to its enterprise-level Research Management Solution (RMS Enterprise), introducing two new capabilities: Custom Fundamentals and Digest Alerts. The updates are designed to address long-standing data interoperability challenges within investment firms, allowing research teams to better integrate proprietary financial models into their workflows and strengthen oversight across their organisations. For many...

EVENT

RegTech Summit London

Now in its 9th year, the RegTech Summit in London will bring together the RegTech ecosystem to explore how the European capital markets financial industry can leverage technology to drive innovation, cut costs and support regulatory change.

GUIDE

Regulatory Data Handbook 2018/2019 – Sixth Edition

In a testament to the enduring popularity of the A-Team Regulatory Data Handbook, we are delighted to publish a sixth edition for 2018-19 of our comprehensive guide to all the regulations and rules that might impact data and data management at your institution. As in previous editions of the Regulatory Data Handbook, we have updated...