About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Nanosecond Market Data Feeds – FPGA Centric vs. FPGA Accelerated Designs

Subscribe to our newsletter

The “Microburst” Problem

Trading architects face the constant challenge of lowering latency.  Today, this challenge is focused on achieving nanosecond speeds in a deterministic way, even during periods of high market activity, so called ‘microbursts’.

In fast moving ‘bursty’ markets, commodity CPUs are no longer capable of offering the lowest latency or tolerating microbursts. Memory bottlenecks, OS overheads, poor parallelism, compiler limitations and slow networking stacks are among the many factors constraining performance.

So, having exhausted conventional methods using commodity CPUs, architects of trading systems have been turning to FPGA technologies to improve latencies and address this microburst problem.

Applying FPGAs for Pipeline Processing

Because FPGAs chips are able to compute thousands of operations per clock cycle, they can be programmed to process market data using a technique known as pipelining. Pipelining allows for a message to begin being processed before the previous ones have been fully dealt with.

A properly pipelined FPGA design can guarantee to process each byte of incoming traffic with the same latency, even at 100% network saturation. However, not all FPGA approaches are the same.

Alternative FPGA Architectures

Today, there are two main approaches in use by the trading community:

* A CPU-based system, using FPGA acceleration technologies
* A pure FPGA system, using a matrix of FPGA’s

Architecture 1 – CPU System with FPGA Acceleration:

Collectively known as ‘hardware acceleration’ techniques, the system remains primarily a CPU centric architecture, with the selective use of FPGAs to off-load certain functions and accelerate the data processing.

In this case, FPGA acceleration is predominately achieved by the use of a PCIe card with an embedded FPGA. With this CPU centric architecture, the FPGA is used as an off-load technology. Since some market data processing does occur in the FPGA, improvements in latency are delivered. However this approach is still affected by the inherent bottlenecks of a traditional CPUs system.

For example, the limitation in PCIe slots, space and power makes it difficult to scale the number FPGAs used. In addition, the communication between two PCIe devices generally takes several microseconds, which is a very long time in the world of market data processing.

Therefore, this solution scales only by sharing the CPU further. Thus, performance will be degraded when data rates increase, when more feeds are being processed, or when more distribution interfaces are added.

This architecture is efficient for locally consumed market data, but it is still susceptible to microbursts.

Architecture 2 – A Pure FPGA Matrix Architecture:

When deterministic latency is critical, the goal is to avoid the bottlenecks of the CPU and maximise the use of FPGA’s throughout the whole market data processing cycle. This FPGA centric approach uses an expandable matrix of FPGA nodes that are linked with raw binary interconnections. This matrix architecture offers the flexibility to efficiently add FPGA resources as the need for processing increases.

In addition, to avoid bottlenecks that can occur with other system resources, each FPGA node comes with its own set of I/Os and memory. This modular matrix allows the system to grow proportionally across multiple feeds.

As a result, all functions of the market data parsing, book building, filtering and distribution can all be done in hardware with no bottleneck, irrespective of the number of feeds received, the rate of data  or the number of downstream consumers.

A Platform for the Future

When looking for optimised speed, it is important consider the complete set of functions needed to be performed to receive, manage and distribute market data. A solution making partial use of FPGAs may deliver some acceleration; however bottlenecks are moved to another part of the system, usually the function that is implemented in software.

A pure FPGA centric design that utilises a modular FPGA approach to scale capacity, can maintain nanosecond speeds even during market microbursts. Processing and normalising market data is the first step. But a matrix of FPGAs can then be extend to enrich fields, trigger order executions, conduct risk checks and even host the actual trading algorithm.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance. Two architectural models central to this conversation are Data Fabric and Data Mesh. This...

BLOG

AI Personalization in Trading: Where We Are and Where We’re Heading

Ivan Kunyankin, Data Science Team Lead at Devexperts. AI may have started out its brokerage career in back-office, enhancing operational efficiency by providing human teams with actionable client insights, but it’s now being promoted to more sensitive client-facing roles. As AI tools continue to evolve and become normalized in more areas of daily life, financial...

EVENT

Eagle Alpha Alternative Data Conference, Spring, New York, hosted by A-Team Group

Now in its 8th year, the Eagle Alpha Alternative Data Conference managed by A-Team Group, is the premier content forum and networking event for investment firms and hedge funds.

GUIDE

The Data Management Implications of Solvency II

Bombarded by a barrage of incoming regulations, data managers in Europe are looking for the ‘golden copy’ of regulatory requirements: the compliance solution that will give them most bang for the buck in meeting the demands of the rest of the regulations they are faced with. Solvency II may come close as this ‘golden regulation’:...