About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

ION Enhances XTP Risk JANUS with AI to Improve Pre-Trade Margin Accuracy

Subscribe to our newsletter

ION has incorporated artificial intelligence into its XTP Risk JANUS platform to improve the accuracy and efficiency of pre-trade risk management for cleared derivatives. The enhancement targets a key challenge in margin estimation using CME Group’s SPAN2 Approximation model.

SPAN2 is a margin methodology developed by CME that assesses the worst-case losses of futures and options portfolios using a historical value at risk (HVAR) approach. While accurate, its complexity makes it too slow for real-time pre-trade applications. CME offers a simplified version, SPAN2 Approximation, for faster calculations, but this often results in discrepancies with the full model.

The AI-driven solution, developed by LIST – an ION company – bridges this gap. Integrated into XTP Risk JANUS and its Margin Engine, the enhancement improves the accuracy of SPAN2 Approximation while preserving its speed, enabling more precise and timely margin estimates.

“We wanted to replicate SPAN2 calculations in real time for pre-trade use, where speed is essential,” Riccardo Bernini, Head of Financial Engineering and AI at LIST, tells TradingTech Insight. “Although CME provides an approximation for this purpose, it isn’t always close to the actual SPAN2 output. So we set out to improve both the accuracy and performance. To achieve this, our team developed a transformer-based neural network, trained entirely in-house, that understands the structure of CME-traded products and generates a correction factor to refine the approximation. The result is a model that delivers much more accurate margin estimates, while still operating fast enough for pre-trade validation, typically within milliseconds.”

The system leverages CME’s deployable SPAN2 library for standard margin calculations and offers the optimised approximation model for use in time-sensitive trading environments. This allows traders to perform pre-trade order validation with greater confidence in margin accuracy, supporting more informed risk and trading decisions.

“It’s not just about improving the accuracy of the approximation, but about doing it in the right way,” adds Luca Papaleo, XTP Risk JANUS Product Owner at LIST. “When you’re targeting a specific margin value, your approximation can overshoot or undershoot. From a risk perspective, underestimating the margin compared to what CME calculates is risky, it could expose firms to insufficient coverage. So while it’s safer to overestimate, the goal is to stay as close as possible to the true value without overshooting significantly.”

The team is now looking at potentially applying this methodology to other exchanges. “What’s interesting is that other clearing houses, such as JSCC in Japan, are also moving towards similar models,” says Papaleo. “If we can identify a workable starting point – like CME’s SPAN2 Approximation – we could potentially apply the same AI-based correction method elsewhere. By combining an internal margin estimate based on a VaR framework with a trained neural network that adjusts it, we could bring the result much closer to the clearing house’s output. This makes the approach adaptable beyond CME.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

23 September 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance....

BLOG

From Pilot to Production: Navigating GenAI’s Transition in Financial Markets

The financial markets sector is accelerating its engagement with generative AI (GenAI), yet moving from proof of concept (POC) to production remains a complex challenge. Key questions continue to dominate industry conversations: What use cases are mature enough for deployment? How can firms embed the necessary controls to manage reputational and regulatory risk? What organisational...

EVENT

AI in Capital Markets Summit London

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...