About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Informatica Highlights Performance of SMX Messaging

Subscribe to our newsletter

Following on from last month’s announcement of Ultra Messaging SMX, Informatica has published a range of latency and throughput performance figures for the shared memory transport, covering a number of programming languages. Messaging latency as low as 39 nanoseconds was recorded, with overall latency more than 16 times lower than tests conducted on an earlier version of the transport, conducted in May 2010.

Ultra Messaging SMX is designed for messaging within a single server – in fact within a single multi-core chip, an architecture that has become increasingly adopted as Intel has rolled out its Sandy Bridge (and now Ivy Bridge) microprocessors – with up to 12 cores on certain Ivy Bridge chips. On chip cache memory is leveraged by SMX, since it is faster than fetching data from standard RAM.

Latency tests were conducted between threads running on the same core (2 threads per core are supported by Intel) and between cores on the same chip. Throughput tests were conducted from one thread to threads across many cores on the same chip. Informatica did not test latency between cores across sockets, since it would have been higher than for a single socket.  

Informatica tested its transport against C, C# and Java APIs, noting that trading systems are often built using a number of languages and so such support is a typical requirement. The test systems for latency included one server with an Intel Xeon E5-1620, with 4 cores, clocked at 3.6 GHz, while for throughput tests a server with a (pre-release) 10 core Ivy Bridge chip, operating at 2.8 GHz, was used. CentOS and Red Hat Linux operating systems were hosts for the C and Java tests, with Microsoft Windows 7 Professional SP1 supporting the C# tests.  

Some highlights from the tests are:

* Thread to thread latency on same core, for the C API, and 16 byte messages, was 39 nanoseconds. The same for 128 byte messages was 48 nanoseconds, for 512 byte messages was 81 nanoseconds. 

* Thread to thread latency on a sibling core, for the C API, was 103 nanoseconds for 16 byte messages, 111 nanoseconds for 128 byte messages, and 135 nanoseconds for 512 byte messages.

* C# and Java latencies were a bit higher.  For example, latency for 512 byte messages between threads on the same core was 135 nanoseconds for C# and 106 nanoseconds for Java.

* As an example of a throughput test, 16 byte messages were transmitted from one thread to up to 19 other threads on the same chip. With 19 receivers and the C API, throughput of 133.92 million messages/secomd was achieved, without batching of messages. Batching – which increases latency – increased this to 305.34 million messages/second. Informatica found that throughput increased nearly linearly as receivers were added.

While the significant decrease in high frequency trading has reduced the overall need for such low latency transports, Informatica notes that it is still required for other trading operations and strategies, such as arbitrage, market making and smart order routing.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: The future of market data – Harnessing cloud and AI for market data distribution and consumption

Market data is the lifeblood of trading, but as data volumes grow and real-time demands increase, traditional approaches to distribution and consumption are being pushed to their limits. Cloud technology and AI-driven solutions are rapidly transforming how financial institutions manage, process, and extract value from market data, offering greater scalability, efficiency, and intelligence. This webinar,...

BLOG

Discover How AI, Modular Architectures, and 24/7 Markets Are Reshaping the Future of Trading Technology

Now in its 13th year, A-Team Group’s TradingTech Briefing New York returns on June 24th to convene leading technologists, strategists, and innovators from across the buy side and sell side for a focused look at how trading infrastructure is evolving to meet the demands of a rapidly changing market landscape. From AI-powered transformation in the...

EVENT

AI in Data Management Summit New York City

Following the success of the 15th Data Management Summit NYC, A-Team Group are excited to announce our new event: AI in Data Management Summit NYC!

GUIDE

ESG Data Handbook 2022

The ESG landscape is changing faster than anyone could have imagined even five years ago. With tens of trillions of dollars expected to have been committed to sustainable assets by the end of the decade, it’s never been more important for financial institutions of all sizes to stay abreast of changes in the ESG data...