About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

IMF Publishes Possible Revisions to its Data Quality Assessment Framework

Subscribe to our newsletter

Given the regulatory community’s crackdown on data quality across the financial services industry, the International Monetary Fund’s (IMF) recently published paper on the improvement of its data quality assessment framework indicators is judiciously timed. In the paper, the IMF’s statistics department suggests improvements to its current set of metrics against which to measure the quality, accuracy and reliability of data gathered during a supervisory endeavour.

Although the IMF’s data quality measurement focus is largely on macroeconomic data for a specific purpose, the lessons in data quality are applicable to much of the other work going on across the regulatory spectrum. Its data quality assessment framework has been developed to provide a framework for a uniform and standardised assessment of data quality and improvements of data compilation and dissemination practices; something that many regulators are focusing on in the search for a better way to evaluate systemic risk.

For example, the European Systemic Risk Board (ESRB) and the US Office of Financial Research will need to regularly evaluate their data quality checking practices, as well as measuring those of the firms they are monitoring. After all, both are charged with collecting the data on which important judgements must be made with regards to systemic risk.

The IMF’s framework currently examines five dimensions of data quality: prerequisites of quality, assurance of integrity, methodological soundness, accuracy and reliability, serviceability and accessibility. The paper, which has been penned by Mico Mrkaic from the IMF’s statistics department, examines whether these are appropriate metrics to use and suggests other possible variables to consider and various practical examples.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Unlocking value: Harnessing modern data platforms for data integration, advanced investment analytics, visualisation and reporting

Modern data platforms are bringing efficiencies, scalability and powerful new capabilities to institutions and their data pipelines. They are enabling the use of new automation and analytical technologies that are also helping firms to derive more value from their data and reduce costs. Use cases of specific importance to the finance sector, such as data...

BLOG

GoldenSource OMNI Evolves as Buy-Side Demands Transform

Data cloud giant Snowflake’s forum in San Francisco last month was closely watched by the data management industry, especially GoldenSource. A year after its launch, the creators of GoldenSource’s OMNI data lake product for asset managers were keenly watching what Snowflake had to offer with an eye to enhancing the app’s own provisions for the...

EVENT

Buy AND Build: The Future of Capital Markets Technology

Buy AND Build: The Future of Capital Markets Technology London examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...