About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Get Ahead on the Data Governance Journey

Subscribe to our newsletter

Data governance that delivers benefits to the business needs to pull together people, process and technology by embracing data ownership, managing metadata, ensuring data quality, and continually improving automation.

These are just some of the guidelines for successful data governance set out by a panel of experts at A-Team Group’s recent Data Management Summit in New York. The panel was moderated by Andrew Delaney, president and chief content officer at A-Team Group, and joined by Ellen Gentile, data quality leader at Edward Jones; Randy Gordon, head of data governance at Cross River; Mark Shainman, senior director of data governance products at Securiti, John Carroll, head of customer success at Datactics; and Derek Wilson, executive director, Lumada Solutions Experience at Hitachi Vantara.

Data ownership

The panel opened with a look at how to embed data ownership across an organisation, which has been something of a problem in the past. Things are changing, however, with the panel noting that business people increasingly understand the benefits of data ownership and want to be accountable for the data they use so that they can take an offensive approach to data management and maximise data assets. As one speaker commented: “Data owners make business decisions.”

Despite this advance, data ownership raises challenges, such as who is creating and defining data, a problem that can be eased by adding criteria to data definitions that can be used across the organisation. The issue of data owned by one person being better or worse than data owned by another is also problematic.

It is here that people, process and technology come in, with upstream data owners making data definitions and, as the data moves downstream, data stewards and data owners taking responsibility for the data and considering its quality. Collaboration, data transparency and workflows help the understanding of who owns particular data and how to work with other data owners.

Turning to the need for data quality, a panel member noted: “Data quality management is at the heart of avoiding data becoming a risk,”. To achieve quality, another noted the need for data stewards to identify critical data elements and create data quality rules for these elements, and avoid boiling the ocean.

Use cases

Considering the use cases of best practice data governance, the panel considered the implications of adding unstructured ESG data. The consensus was that ESG data should be treated in the same way as financial and economic data, and to treat it separately would lose all the benefits of scale previously built into data management and governance.

Data privacy was also highlighted, with one speaker noting, “Organisations must understand what sensitive data they hold and how many systems it is in.” Doing this manually is not scalable. Instead, technologies such as AI and ML can be used to find out where the data is, and controls can be imposed on the data depending on its sensitivity. “Data governance is important here, and metadata needs to be added to govern the data appropriately.”

Technology

Technology plays a critical role in managing huge volumes of data as it scales and becomes more complex, while the creation of metadata allows AI and ML to identify hidden data relationships that are not otherwise apparent. This process is a driver of automation, and as one speaker put it, “Automation helps data discovery and access to the data.”

Closing the technology discussion, another a speaker said: “Technology helps data governance and data governance helps the business. By prioritising metadata, data governance drives value out of data that is not achievable using anything else.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Best practice approaches to data management for regulatory reporting

Effective regulatory reporting requires firms to manage vast amounts of data across multiple systems, regions, and regulatory jurisdictions. With increasing scrutiny from regulators and the rising complexity of financial instruments, the need for a streamlined and strategic approach to data management has never been greater. Financial institutions must ensure accuracy, consistency, and timeliness in their...

BLOG

Building an AI Data Strategy: Licensing, Governance, and Usage

AI is often seen as a disruptive force, but it is just as much an evolution as a revolution. Machine learning and automation have long been embedded in financial workflows—the key difference today is the scale and power of AI-driven technologies. As these capabilities expand, how should firms navigate data governance, intellectual property protection, and...

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...