About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Cantor Evaluating Calxeda ARM Chips for 10x Breakthrough

Subscribe to our newsletter

“I think the Calxeda-ARM machine is an exciting step … I’m evaluating carefully how it can impact the metrics I care about,” says Niall Dalton, director of high frequency trading at Cantor Fitzgerald. He is referring to today’s announcement by Calxeda of their very low power microprocessors based on the ARM architecture – and HP’s plan to build servers based on them.

ARM-based chips run on very low power, and are used by many manufacturers of consumer devices, such as mobile phones. Austin, Texas-based Calxeda is, however, building its chips for highly parallel server designs.

The initial EnergyCore processor – or Server on a Chip – from Calxeda includes four ARM cores, 4MB of L2 cache memory, an 80 gigabit per second interconnect and system/power management functions – all requiring just 1.5 watts of power.

HP will build servers with 288 EnergyCores in a 4U appliance. “A single rack of HP’s Calxeda servers delivers the throughput of some 700 traditional servers and dramatically simplifies the infrastructure needed to hook them all together and manage the cluster,” claims Calxeda co-founder and CEO Barry Evans.

“Companies in our industry are constrained by space and power, yet our appetite for analysis is insatiable,” says Cantor’s Dalton, who continues: “We need a 10x breakthrough and this could be it. We are evaluating the Calxeda technology in hyperscale throughput computing for data and simulation intensive applications. The Calxeda Linux platform enables rapid porting of our software, enabling us to quickly leverage the energy-efficient ARM cores and Calxeda’s scalable communications fabric to scale our applications to new heights.”

For financial markets applications, it looks like Calxeda’s performance/power footprint could be a winner for those firms needing to mine data to develop pre-trade models and post-trade simulations – as fast as possible.  And where those systems are in outsourced managed environments, and possibly in proximity and co-lo centres, the operations costs related to space and power can be considerable.
 

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Best Practices for Managing Trade Surveillance

The surge in trading volumes combined with the emergence of new digital financial assets and geopolitical events have added layers of complexity to market activities. Traditional surveillance methods often struggle to keep pace with these changes, leading to difficulties in detecting sophisticated market abuses and increased regulatory risk. To address these challenges, financial institutions are...

BLOG

A-Team Group Announces Winners of the AI in Capital Markets Awards 2025

A-Team Group has announced the winners of the inaugural AI in Capital Markets Awards 2025, celebrating the most innovative and impactful applications of artificial intelligence and machine learning across the global financial markets. The new awards programme recognises technologies that have moved beyond proof-of-concept to deliver measurable value, supporting efficiency, resilience, and insight generation across...

EVENT

TradingTech Summit London

Now in its 15th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

Managing Valuations Data for Optimal Risk Management

The US corporate actions market has long been characterised as paper-based and manually intensive, but it seems that much progress is being made of late to tackle the lack of automation due to the introduction of four little letters: XBRL. According to a survey by the American Institute of Certified Public Accountants (AICPA) and standards...