About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Broadridge Partners Tookitaki to Deliver AI Based Data Reconciliation Platform

Subscribe to our newsletter

Responding to the ongoing industry challenge of data reconciliation, Broadridge Financial Solutions has released Data Control Intelligent Automation, an artificial intelligence (AI) and machine learning (ML) platform built for deployment across reconciliation, matching and exception management applications. The solution has been developed with Singapore-based Tookitaki, a provider of AI and ML technology.

The platform will allow customers to license modules on the platform that provide intelligent automation applications. The initial modules are Break Management and Recon Perform. Both modules provide enterprise wide capability, working across not only Broadridge reconciliation solutions, but also in-house and third-party developed solutions.

Alastair McGill, general manager of Data Control Solutions at Broadridge, says: “Intelligent automation will drive performance and productivity gains from incumbent reconciliation systems, especially where organisations have multiple vendor solutions in place.”

The Broadridge platform uses a distributed computing framework to deliver a high-performance and scalable matching and exception process. It is agnostic to the underlying reconciliation system and can be deployed on premise, on Broadridge managed servers or in the cloud. The Break Management module accelerates the investigation process, reducing resolution times by continuously improving break classification according to client-defined business reasons. Recon Perform automates reconciliation builds with an automatic matching scheme that uses supervised ML models and continuous matching scheme improvement, saving time and cost for firms managing large volumes of reconciliations. 

The Tookitaki element of the solution includes the company’s patent-pending explainability framework, which offers a ‘glass-box’ approach to ML models that allows users to view decisions made by the platform’s engine through a simple interface.

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: Hearing from the Experts: AI Governance Best Practices

The rapid spread of artificial intelligence in the financial industry presents data teams with novel challenges. AI’s ability to harvest and utilize vast amounts of data has raised concerns about the privacy and security of sensitive proprietary data and the ethical and legal use of external information. Robust data governance frameworks provide the guardrails needed...

BLOG

Growing Modern Data Platforms Adoption Seen as Benefits Become Apparent: Webinar Review

Take-up of modern data platforms (MDPs) is expected to accelerate in the next few years as financial institutions realise the greater agility, scalability and deeper insights offered by the innovation. Organisations that have so far been relatively slow to adopt the streamlined platforms – because they have been unsure of the technologies’ benefits – will...

EVENT

Buy AND Build: The Future of Capital Markets Technology

Buy AND Build: The Future of Capital Markets Technology London examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

Regulatory Data Handbook 2025 – Thirteenth Edition

Welcome to the thirteenth edition of A-Team Group’s Regulatory Data Handbook, a unique and practical guide to capital markets regulation, regulatory change, and the data and data management requirements of compliance across Europe, the UK, US and Asia-Pacific. This year’s edition lands at a moment of accelerating regulatory divergence and intensifying data focused supervision. Inside,...