About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

How to Get Ahead on the Data Governance Journey

Subscribe to our newsletter

Data governance that delivers benefits to the business needs to pull together people, process and technology by embracing data ownership, managing metadata, ensuring data quality, and continually improving automation.

These are just some of the guidelines for successful data governance set out by a panel of experts at A-Team Group’s recent Data Management Summit in New York. The panel was moderated by Andrew Delaney, president and chief content officer at A-Team Group, and joined by Ellen Gentile, data quality leader at Edward Jones; Randy Gordon, head of data governance at Cross River; Mark Shainman, senior director of data governance products at Securiti, John Carroll, head of customer success at Datactics; and Derek Wilson, executive director, Lumada Solutions Experience at Hitachi Vantara.

Data ownership

The panel opened with a look at how to embed data ownership across an organisation, which has been something of a problem in the past. Things are changing, however, with the panel noting that business people increasingly understand the benefits of data ownership and want to be accountable for the data they use so that they can take an offensive approach to data management and maximise data assets. As one speaker commented: “Data owners make business decisions.”

Despite this advance, data ownership raises challenges, such as who is creating and defining data, a problem that can be eased by adding criteria to data definitions that can be used across the organisation. The issue of data owned by one person being better or worse than data owned by another is also problematic.

It is here that people, process and technology come in, with upstream data owners making data definitions and, as the data moves downstream, data stewards and data owners taking responsibility for the data and considering its quality. Collaboration, data transparency and workflows help the understanding of who owns particular data and how to work with other data owners.

Turning to the need for data quality, a panel member noted: “Data quality management is at the heart of avoiding data becoming a risk,”. To achieve quality, another noted the need for data stewards to identify critical data elements and create data quality rules for these elements, and avoid boiling the ocean.

Use cases

Considering the use cases of best practice data governance, the panel considered the implications of adding unstructured ESG data. The consensus was that ESG data should be treated in the same way as financial and economic data, and to treat it separately would lose all the benefits of scale previously built into data management and governance.

Data privacy was also highlighted, with one speaker noting, “Organisations must understand what sensitive data they hold and how many systems it is in.” Doing this manually is not scalable. Instead, technologies such as AI and ML can be used to find out where the data is, and controls can be imposed on the data depending on its sensitivity. “Data governance is important here, and metadata needs to be added to govern the data appropriately.”

Technology

Technology plays a critical role in managing huge volumes of data as it scales and becomes more complex, while the creation of metadata allows AI and ML to identify hidden data relationships that are not otherwise apparent. This process is a driver of automation, and as one speaker put it, “Automation helps data discovery and access to the data.”

Closing the technology discussion, another a speaker said: “Technology helps data governance and data governance helps the business. By prioritising metadata, data governance drives value out of data that is not achievable using anything else.”

Subscribe to our newsletter

Related content

WEBINAR

Recorded Webinar: How to simplify and modernize data architecture to unleash data value and innovation

The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines. In response, innovative new streamlined and flexible architectures have emerged that can absorb and...

BLOG

Experts Urge Data-Focussed Prep for Asset Management AI Adoption

Leading data practitioners have urged financial institutions to ensure they have suitable data management and infrastructural setups to accommodate artificial intelligence (AI) applications following a report that suggested asset managers are struggling to roll out the technology. The latest in an annual study by professional services giant KPMG found that while asset managers in the...

EVENT

AI in Capital Markets Summit London

The AI in Capital Markets Summit will explore current and emerging trends in AI, the potential of Generative AI and LLMs and how AI can be applied for efficiencies and business value across a number of use cases, in the front and back office of financial institutions. The agenda will explore the risks and challenges of adopting AI and the foundational technologies and data management capabilities that underpin successful deployment.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...