About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

Kingland Cognitive Engine Turns Unstructured Data into Actionable Information

Subscribe to our newsletter

Have you ever considered how much value is tied up in unstructured data that is difficult to access? What nuggets of useful information could be buried in documents such as company reports? And how you could turn masses of unstructured data into actionable information?

If the answer to these questions is yes, and it probably is for most financial firms, solutions based on artificial intelligence (AI) and natural language processing (NLP) are emerging that can identify and extract otherwise hidden data gems, discover relationships between people, companies and products in unstructured data, and greatly reduce the amount of time it takes experts at banks and trading firms to read and consume unstructured data.

Kingland Systems has been working with AI since 2010 and in recent years has invested in people, technology and partnerships with universities to drive its cognitive computing platform to new levels. The company has also done time and motion studies showing that risk analysts spend 50% to 70% of their time reading unstructured data and looking for valuable information. Using text analytics and data extraction, the task can be done accurately in minutes, and provide actionable data that can be fed into appropriate systems.

Tony Brownlee, executive vice president of business development and chief strategy officer at Kingland, explains: “If, for example, you have a 200 page document and you are looking for specific data attributes that are all buried in different formats and languages such as legal prose, it is a time challenge for a knowledge worker to find, extract and put the data into the systems that will use it. Using NLP technology it is possible to gather unstructured data from many sources such as PDFs, scanned images and HTML documents, look at the characteristics of the documents, and train and tune the cognitive engine to read the material and extract selected attributes.”

In terms of time, it would take an average person seven hours to read and retain 60% of the content in a 478 page document with 85,056 words, 3,470 sentences, 3,390 numbers, 219 tables and 5,996 entities, people and products. Kingland’s cognitive engine, which operates as a cloud service with clients uploading scanned documents, can read the document and hundreds more in a few minutes, and extract selected data. Similarly, and on a commercial basis, DTCC uses the Kingland engine in its Mutual Fund Services business to read prospectuses and find and update required data in minutes – the output of the engine is 99% accurate.

Brownlee acknowledges that it takes time, typically about six months, to train the engine to identify specific data and, where required, related data attributes, and notes that where requirements are super complex firms may still want experts to read documents and extract data. Also, every client has different priorities around elements such as data sources, data attributes and consuming systems, making projects expensive, at least for now.

The benefits, however, can be significant. For example, it is possible to read 10 years of annual reports in minutes, discover how often particular clients appear and use this data for marketing purposes. It is also possible to extract people, entities and products, and the relationships between them, to identify valuable business opportunities and potential risks.

In the financial sector, demand for text analytics and extraction is coming predominantly from global investment banks and large sell-side and buy-side firms that are highly regulated. Brownlee says they often turn to Kingland to read and extract data from reports and financial agreements. On the regulatory front, they look to Kingland for help in identifying specific attributes included in particular regulations. For example, a bank onboarding a client will fill in a form that should include information such as the client’s name, address, type of business and Legal Entity Identifier (LEI), although there is no guarantee that all this information will be collected. The Kingland cognitive engine can be trained to read tens of thousands of forms to find out whether specific information, such as the LEI, has or hasn’t been included on forms related to particular clients.

Brownlee concludes: “We are at an inflection point in AI and NLP technology and have reached a time of ‘the art of the possible’. It is possible to unlock documents and use the resulting treasure trove of data to great effect.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: How to simplify and modernize data architecture to unleash data value and innovation

15 May 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes The data needs of financial institutions are growing at pace as new formats and greater volumes of information are integrated into their systems. With this has come greater complexity in managing and governing that data, amplifying pain points along data pipelines....

BLOG

Critical but Challenging – Managing Unstructured Data: A-Team Webinar Preview

Unstructured data accounts for an estimated 80 per cent of companies’ data estate and the volume of that information is forecast to grow by a third each year. Consequently, management of the class of data that is being culled from sources as diverse as financial reports and social media posts has become a pressing challenge....

EVENT

Data Management Summit New York City

Now in its 15th year the Data Management Summit NYC brings together the North American data management community to explore how data strategy is evolving to drive business outcomes and speed to market in changing times.

GUIDE

AI in Capital Markets: Practical Insight for a Transforming Industry – Free Handbook

AI is no longer on the horizon – it’s embedded in the infrastructure of modern capital markets. But separating real impact from inflated promises requires a grounded, practical understanding. The AI in Capital Markets Handbook 2025 provides exactly that. Designed for data-driven professionals across the trade life-cycle, compliance, infrastructure, and strategy, this handbook goes beyond...