About a-team Marketing Services
The knowledge platform for the financial technology industry
The knowledge platform for the financial technology industry

A-Team Insight Blogs

TORA Introduces AlgoWheel to Help Firms Create Systematic Best Ex Processes

Subscribe to our newsletter

TORA has introduced an AI-powered AlgoWheel designed to help firms create scalable and systematic best execution processes in line with the requirements of Markets in Financial Instruments Directive II (MiFID II).

The TORA AlgoWheel is a quantitative execution strategy optimiser that uses AI technology to automate low-touch order execution or provide real-time market intelligence for orders needing human intervention. It provides a feedback loop that uses historical and real-time order-level execution information to identify the optimal broker algo and inform the trading decision making process.

Historical trade execution information is captured by TORA’s post-trade transaction cost analysis (TCA) solution, while the company’s AI-driven pre-trade TCA tool is used to evaluate each order. The pre-trade TCA platform is built on a convolutional neural network that uses machine learning to increase its estimation precision over time.

Low-touch orders can be automatically executed by TORA’s Strategy Server using the recommended broker algo combination. Alternatively, the recommended broker algo can be displayed directly in the TORA trading blotter for orders where a trader wants to be involved.

When using the automated process, the Strategy Server is configurable to enable traders to customise the execution process using any number of data inputs. For example, traders can set a trading strategy to begin at a time of day, when a stock hits a certain price or pending certain overall market conditions. The server can also be configured to send a certain percentage of orders to different broker algos to help avoid sample bias.

Chris Jenkins, managing director at TORA, says: “To remain competitive in today’s market, traders need to focus their attention where they can add most value. To do that, they need an automated trading solution they trust can achieve best execution for the bulk of their orders.”

Subscribe to our newsletter

Related content

WEBINAR

Upcoming Webinar: The Role of Data Fabric and Data Mesh in Modern Trading Infrastructures

23 September 2025 10:00am ET | 3:00pm London | 4:00pm CET Duration: 50 Minutes The demands on trading infrastructure are intensifying. Increasing data volumes, the necessity for real-time processing, and stringent regulatory requirements are exposing the limitations of legacy data architectures. In response, firms are re-evaluating their data strategies to improve agility, scalability, and governance....

BLOG

BMLL and Ultumus Partner to Enhance ETF Trading Analytics with Level 3 Data

Market data and analytics provider BMLL has entered into a strategic partnership with Ultumus, a leading specialist in ETF and index data, to deliver a combined data offering aimed at improving trading efficiency and analytics for the global ETF community. The collaboration integrates Ultumus’s widely used ETF reference and Portfolio Composition File (PCF) data with...

EVENT

TradingTech Summit London

Now in its 14th year the TradingTech Summit London brings together the European trading technology capital markets industry and examines the latest changes and innovations in trading technology and explores how technology is being deployed to create an edge in sell side and buy side capital markets financial institutions.

GUIDE

The DORA Implementation Playbook: A Practitioner’s Guide to Demonstrating Resilience Beyond the Deadline

The Digital Operational Resilience Act (DORA) has fundamentally reshaped the European Union’s financial regulatory landscape, with its full application beginning on January 17, 2025. This regulation goes beyond traditional risk management, explicitly acknowledging that digital incidents can threaten the stability of the entire financial system. As the deadline has passed, the focus is now shifting...